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Abstract

Why do sanctions violations remain pervasive, even as authorities now enlist third-
party market intermediaries to exclude violators from global finance and trade? We
show that the primary reason is not weak compliance incentives — as commonly as-
sumed in policy debates — but rather the difficulty these third parties face in identifying
violators. Our analysis exploits the sudden disclosure of a list of suspected sanctions-
violating oil tankers on Refinitiv Eikon, the world’s second-most widely used business
data platform, by the maritime analytics firm Windward.ai. This disclosure increased
third-party detection accuracy (pseudo-RQ) from 18% to 42%, resulting in a 13% de-
cline in earnings for suspect tankers, a 17% drop in their likelihood of approaching
sanctioned countries, and a 37% drop in their resale probability. A dynamic structural
model calibrated to these market impacts implies that the information shock redirected
$1.1 billion a year away from violators and reduced compliant exporters’ shipping costs
by 3.5%, but it also reduced compliant tankers’ earnings. The model further explains
why Windward — despite the sizable market impact of its list — was valued at only
$42 million just before the disclosure. Finally, counterfactual analysis confirms that
stronger penalties alone are ineffective without better information.
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In recent decades, sanctions enforcement has evolved beyond an exclusive reliance on
state-imposed penalties toward a more decentralized, market-based framework. In this sys-
tem, sanctioning authorities require third-party intermediaries — such as banks, insurers,
shipping companies, and other service providers — to conduct due diligence, monitor coun-
terparties, and terminate relationships with entities that facilitate violations (see, e.g., Huf-
bauer and Jung, 2020; Norrlof, 2021; Van Genugten, 2021). The scope of sanctions has thus
been broadened by enlisting non-state actors to restrict violators’ access to critical financial
and logistical infrastructure — such as the SWIFT payment network or the U.S. dollar-based
financial system. Yet enforcement outcomes remain uneven, with continued and widespread
violations revealing significant challenges (see, e.g., Fisman et al. (2024); ESRC’s Economic
Observatory, or, The New Yorker).

In this paper, we study whether these enforcement challenges arise primarily from in-
formation constraints — i.e., because third parties have difficulty identifying violators —
or from limited compliance incentives — i.e., they can identify violators but nonetheless
continue dealing with them.

Sanctioning authorities like the U.S. Office of Foreign Assets Control (OFAC) have typ-
ically focused on strengthening incentives, by imposing steep penalties for non-compliance
(e.g., BNP Paribas paid a $8.97 bln fine in 2014), extending statutes of limitations from
five to ten years (OFAC, July 2024), and clarifying that sanctions operate on a strict liabil-
ity basis, meaning enforcement of penalties does not require proof of intent (OFAC, March
2024)."

However, sanctioning authorities provide only limited support in identifying violators, ef-
fectively shifting the burden of detection onto market participants. Consider the oil shipping
sector, which plays a central role in global trade (Brancaccio, Kalouptsidi and Papageorgiou,
2020, 2023; Ready, 2018) and serves as the primary conduit for vital oil export revenues of
sanctioned states such as Russia and Iran (Brown, 2020). In this sector, U.S. sanctioning
authorities added approximately 100 tankers to publicly available sanctioned entity lists be-
tween 2021 and 2024. Over the same period, however, the Congressional Research Service
estimated that more than 1,600 vessels transported sanctioned oil, implying that identifica-
tion of the remaining 1,500 tankers was left to third parties.

At the same time, market participants across sectors increasingly underscore the difficulty
of detecting sanctions violators. In finance, for instance, a review of 10-K filings by the 50
largest U.S. institutions shows that 97% explicitly cite the challenge of identifying violators

as a significant compliance risk (Figure 1).

'This focus on incentives is not unique to the U.S.: other sanctioning authorities such as the EU and the
UK have adopted comparable enforcement principles; see, e.g., FCA, 2024).


https://www.economicsobservatory.com/sanctions-effectiveness-what-lessons-three-years-into-the-war-on-ukraine
https://www.economicsobservatory.com/sanctions-effectiveness-what-lessons-three-years-into-the-war-on-ukraine
https://www.newyorker.com/news/daily-comment/why-sanctions-too-often-fail
https://ofac.treasury.gov/recent-actions/20240722
https://www.justice.gov/opa/media/1341411/dl?inline
https://www.justice.gov/opa/media/1341411/dl?inline
https://sgp.fas.org/crs/row/R47962.pdf
https://legacyhandbook.fca.org.uk/
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Figure 1: This figure shows the results from a large-language-model-based (OpenAI’s ChatGPT-4) analysis
of 10-K reports of the largest (by total assets) U.S. financial firms between 2015 and 2023. We first ask
GPT-4 to identify the reports that mention sanctions enforced by OFAC, or sanctions-related risk, cost, or
uncertainty. Then, we ask it to identify the reasons why the firms think sanctions compliance is challenging
(further details are in Internet Appendix A). The left plot shows the percentage of firms among the 20,
30, and 50 largest financial firms, respectively, that mention economic sanctions-related risk (or cost or
uncertainty) in their 10-K reports over the 2015-2023 period. The right plot shows the top eight challenges
in sanctions compliance for the 50 largest financial firms.

Similar detection challenges have also been flagged by leading intermediaries in the lo-
gistics sector. For example, Daniel Tadros, Chief Operating Officer of the American Club —
a leading U.S.-based P&I insurer — was quoted by the New York Times: “It’s impossible
for us to know on a daily basis exactly what every ship is doing, where it’s going, what it’s
carrying, or who its owners are.”

To assess whether information or incentives are the binding constraint on sanctions en-
forcement, we first assess the credibility of market participants’ detection concerns. The
ideal design would be a sudden public release of a comprehensive violator list, enabling com-
parison of market reactions for listed entities against a matched set of compliant tankers.
We approximate this setting using a quasi-natural experiment: the unexpected disclosure in
August 2023, on the widely used Refinitiv Eikon platform (LSEG, 2023), of a list of suspect
tankers compiled by Windward, an Al-based maritime anomaly-detection firm. Following
the disclosure, Windward’s suspect-tanker module was made publicly available —- free for
six weeks and then via a nominal £270/month subscription.

If market participants already had sufficient incentives to avoid violators but were con-
strained by inadequate information, then by relaxing this constraint the Refinitiv disclosure
would have triggered sizable market-driven penalties for sanctions violators. To formally test
this hypothesis, we estimate the information elasticity of enforcement: the extent to which

improvement in detection accuracy reduces profits for violators.


https://www.nytimes.com/interactive/2024/02/16/world/middleeast/iran-oil-tankers-sanctions.html

The first step in estimating this elasticity is to quantify the improvement in detection
accuracy following the disclosure. This, however, poses a challenge — the accuracy of interest
concerns the probability with which an average sanctions-violating tanker can be identified,
whereas we, as econometricians, do not observe the set of true violators. We address this
challenge using two complementary strategies. First, we compute the out-of-sample pseudo-
R? with which a third-party could have predicted which tankers would be sanctioned over
the subsequent months (until the end of our sample); this enables us, via a structural model,
to calibrate the object of interest — the detection accuracy across the broader population of
violators. To calculate this out-of-sample pseudo—RQ, we train machine learning models using
publicly available ship-tracking signals and satellite data, adhering to industry best practices.
In the pre-disclosure period, these models achieve a pseudo—R2 of just 4.4%; but after the
disclosure, when we include Windward’s proprietary list as an additional input, the pseudo-
R? rises to 15.4%. Second, to further validate the informational value of the disclosure, we
leverage a unique dataset from an anonymous port agent operating in a Persian Gulf country.
This dataset identifies 33 foreign-flagged (non-Iranian) oil tankers that were seen violating
[ranian sanctions in January 2021.> Of these, 27 were flagged as risky by Windward. By
contrast, our machine learning models based solely on public data correctly identified at most
17 of these tankers, while a different but also well-known public list — from the advocacy
group United Against Nuclear Iran (UANI) — included only 10.

The second step in estimating the information elasticity of enforcement is to quantify
the disclosure’s impact on violators’ profits. We do so using an event-study framework
complemented by structural modeling. For the event study, we implement both a Propen-
sity Score Matched Difference-in-Differences (PSM-DiD) estimator and the semi-parametric
Difference-in-Differences approach of Abadie (2005). We compare three key market outcomes
for tankers flagged as high-risk by Windward with a matched set of low-risk tankers, before
and after the disclosure event. We find that, first, average earnings for high-risk tankers de-
clined by 13% following the disclosure, relative to their counterfactuals. Second, these vessels
became 17% less likely to approach sanctioned countries, implying that the perceived risk of
detection and enforcement began to outweigh the profit incentives for continued violations.
Third, transaction data from Drewry show that the probability of reselling a tanker flagged
as risky fell by 37% within a year of the disclosure — likely reflecting restrictions imposed
by sanctioning authorities that prohibit transfers of ownership of implicated vessels.

Taken together, these findings point to economically significant losses for suspected sanc-

tions violators following the Refinitiv disclosure. It is important to note, however, that this

While this dataset permits a direct measurement of detection accuracy, we refrain from using it as our
main estimate given its limited size and scope.



evidence pertains to suspected violators — those flagged on the Refinitiv list, rather than
actual violators — those targeted by authorities, but whose identities are unobserved. To
address this limitation, we develop a dynamic structural model of the oil shipping sector
with endogenous compliance decisions. In this framework, key unobservables — such as the
accuracy of detecting actual violators, as well as freight rates and profit margins for both
sanctions-violating tankers and sanctioned exporters — are determined in equilibrium and
can be inferred by calibrating the model to market data and our reduced-form event-study
estimates.

Our results indicate that the disclosure increased the probability of correctly identifying
actual sanctions-violating tankers from 18% to 42%, triggering a sizable redistribution of
rents — about $1.1 billion annually away from violators and $1.9 billion annually toward
compliant actors. Sanctioned oil exporters faced a 1.2% increase in freight rates, and their
tanker usage declined by 7.7% after the disclosure, while exporters of non-sanctioned oil saw
their freight costs drop by 3.5%. Additionally, the continuation value of violating tankers
fell by 8.5%, i.e., $3.4 million each for tankers about 15-year-old, similar to those typically
used in sanctioned trades. Assuming that roughly 1,500 tankers were engaged in violations
but were not formally designated around the time of the Windward event, this translates to
a total decline in value exceeding $5.1 billion for these tankers.

In sum, improving detection accuracy imposes substantial losses on sanctions violators,
suggesting that better information meaningfully strengthens enforcement. However, our
analysis also uncovers a counterintuitive implication: not all compliant actors benefit. Model
calibration reveals that even fully compliant tankers — those with no history of transport-
ing sanctioned oil — suffered a decline in earnings following the Refinitiv disclosure, which
amounted to an aggregate annual loss of $2.4 billion. This occurs because sanctioned oil
exporters, facing heightened detection risk, avoid hiring tankers with prior violations. These
tankers shift to the compliant segment of the market, increasing competition and putting
downward pressure on freight rates. Part of this downward pressure is offset by sanctioned
oil exporters offering a premium to attract compliant tankers, but these added earnings are
insufficient to offset the broader decline of freight rates in the much larger compliant market.
We test this prediction in Section 3.5 using a shift-share design, and find supportive evidence
in the data.

Next we use the model to explore a complementary counterfactual. While the previous
analysis assessed improvements in information while holding incentives fixed, now we consider
the reverse: strengthened compliance incentives while keeping detection accuracy fixed at
pre-disclosure levels. This exercise allows us to test whether limited information was indeed

the binding constraint on enforcement. If so, tightening incentives — for example, by imposing



higher fines on exporters of non-sanctioned oil who hire sanctions-violating tankers — should
have limited impact in the absence of better detection. The results confirm this hypothesis:
with detection remaining as noisy as pre-disclosure, increasing penalties yields little change
in enforcement outcomes.

So far, our results show that limited information — rather than weak compliance incentives
— was the primary constraint on sanctions enforcement. In order to understand the policy
implications of these findings, however, it is important to recognize that this constraint did
not stem from a lack of available information: Windward had been selling the same list of
sanctions violators prior to its public disclosure, yet most market participants chose not to
purchase it. This implies that the market perceived the expected benefit of acquiring the
information to be lower than its cost — a fact that has to be accounted for when designing
policy.

The simplest explanation for this choice would be that market participants, e.g., exporters
of non-sanctioned oil, accurately anticipated the list’s value (which we estimate at $4.9 billion
for this group) but found its cost to be even higher. However, the data contradict this
interpretation. Windward’s total stock market valuation — reflecting the value of its sanctions
risk list, plus its other assets — was just $42 million prior to the disclosure, suggesting that
the cost of acquiring the information was two orders of magnitude smaller than its ex-post
benefit. In fact, based on our estimates of total gains and market shares, each one of the top
20 non-sanctioned oil exporters gained more than $42 million from the disclosure (Internet
Appendix Table A-8), implying that any of them could have acquired Windward outright,
released the list publicly, and still profited. It is therefore implausible that our findings
reflect a free-rider equilibrium — one where individual exporters lacked sufficient incentive to
act and collective action failed due to coordination frictions.

The data, instead, point to a different explanation: exporters of non-sanctioned oil un-
derestimated the accuracy of Windward’s list and, as a result, misperceived its value to be
low. If the market was stuck in an equilibrium where this misperception persisted—i.e.,
market forces alone could not correct it—then some form of policy intervention would be
warranted.

Such a persistently low valuation for Windward is exactly what we find in the data:
Windward’s stock price had dropped to half of its IPO value — and stayed at that level
or below for over a year — before it decided to disclose its sanctions list on Refinitiv. Our
model provides a micro-foundation for why this could happen. At its core is a self-fulfilling
feedback loop between beliefs about data accuracy and Windward’s market valuation. In
this loop, a potential buyer — uncertain about Windward’s accuracy, given that it was a

young startup in a novel domain (Cohen et al., 2013) — tries to infer what others believe,



using Windward’s valuation as a signal (e.g., Sun, 2017; Banerjee, 2011; Bond et al., 2012).
A low valuation signals low perceived accuracy, which reduces the buyer’s own willingness
to pay, thereby reinforcing the low valuation. In such an equilibrium, even a temporary
drop in valuation— driven, e.g., by uninformed trading (Edmans et al., 2012)—can lead to
persistent undervaluation and overly pessimistic beliefs about accuracy. Windward’s decision
to release its suspect tanker list at near-zero cost can be interpreted as an attempt to escape
this undervaluation trap by publicizing its true accuracy. We present three features of the
data consistent with this interpretation in Section 3.2.4.

Even so, one might still ask whether any policy response is necessary—after all, the infor-
mation constraint was eventually alleviated by the Refinitiv disclosure, without regulatory
intervention. However, if that disclosure occurred only as a last resort to escape persistent
undervaluation, it raises a deeper concern: would Windward—or any similar firm—have
invested in creating such a list if it had anticipated this outcome from the outset? More
broadly, the possibility that markets can persistently undervalue even reasonably accurate
sanctions-violator lists weakens incentives for private firms to produce them.

Market failure arising from persistent undervaluation of high-quality information implies
that authorities need to reconsider information policy as a tool to reduce the profitability
of sanctions evasion. Short of publicly funding the production and release of such data,
one option is to help private providers credibly signal information quality—for example,
through certification mechanisms. Another is to facilitate public access to high-quality data
via transfer schemes: for instance, a policymaker could purchase the information from a data
vendor at a price that sustains future production—even if that price exceeds what the market
would otherwise bear—and then recover the cost by charging a fee or tax to its beneficiaries.

Related Literature: Our paper contributes to several strands of literature. First, we relate
closely to work on sanctions violation and forensic detection. Prior research has developed
creative methods for uncovering violations using indirect signals—such as price gaps in oil
markets (Hsieh and Moretti, 2006), stock returns in response to arms embargoes (Dellavigna
and La Ferrara, 2010), and rerouted trade during geopolitical blockades (Fisman et al., 2024).
Unlike these studies, we examine how markets respond to improved detection, leveraging a
quasi-experimental disclosure and a structural model to trace effects on pricing, routing,
and asset values. In doing so, we contribute to a broader literature on forensic economics
and illegal activity detection (e.g., Dimmock and Gerken, 2012; Fisman and Wei, 2004,
2009; Griffin and Kruger, 2023; Griffin and Maturana, 2016; Griffin and Shams, 2018), while
emphasizing information frictions as a structural bottleneck to enforcement.

More broadly, we contribute to the literature on the economics of sanctions and embar-
goes (e.g., Baldwin, 2020; Cipriani et al., 2023; Crozet et al., 2021; Early and Preble, 2019;



Eaton and Engers, 1992, 1999; Efing et al., 2023; Huynh et al., 2023; Itskhoki and Mukhin,
2023). These papers typically focus on strategic interactions, incentive compatibility, or po-
litical economy considerations, and often assume that violations are observable or formally
designated. In contrast, we show that improved detection alone can meaningfully enhance
enforcement. More specifically, we relate to studies on the effects of recent sanctions on Iran
(Dizaji and van Bergeijk, 2013; Haidar, 2017) and Russia (Babina et al., 2023; Huynh et al.,
2023; Lastauskas et al., 2023), but differ in focusing on the provision of identifying infor-
mation about suspected violators, rather than the imposition of sanctions per se. Similarly,
while Bai et al. (2025) estimate the global macroeconomic effects of unauthorized shipments
sanctioned oil, we highlight the detection limits that allow such shipments to persist despite
regulatory efforts.

Finally, we contribute to a broader literature on information disclosure and market dis-
cipline (e.g., Goldstein and Yang, 2019; Liberti, Seru and Vig, 2016; Peress, 2014), which
examines how public and private signals affect contracting and resource allocation. We show
that public classification of suspected violators in enforcement-sensitive markets not only
shifts prices but also alters equilibrium dynamics — spillovers that our model formalizes and
quantifies.

Taken together, our paper offers the first unified empirical and structural analysis of
sanctions enforcement under imperfect detection. We move beyond traditional concerns of
incentive compatibility and strategic signaling to show that informational frictions alone can
significantly shape enforcement outcomes.

The rest of the paper is organized as follows: Section 1 provides a brief background,
Section 2 examines the Refinitiv disclosure, Section 3 presents a dynamic structural model

and estimates key quantities of interest within its scope, and Section 4 concludes.

1 Background

In this section, we first explain why it may be difficult to detect violating tankers — in spite
of their large, slow-moving nature, and in spite of modern advances in data and technology
to monitor vessels at sea. Then we describe the circumstances surrounding the key event
we study — the Refinitiv disclosure in August 2023 — that allows us to evaluate whether a
lack of information or incentives is acting as a binding constraint on improved sanctions

enforcement.



1.1 Obfuscating Violations: The Case of Oil Transport

Before we focus on detecting sanctions-violating tankers, here we explain what makes de-
tection hard — i.e., how do violating tankers obfuscate their activities. Here we illustrate
typical strategies violators employ to evade detection through ship-tracking data from the
Automatic Identification System (AIS).”

Authorities enforcing sanctions advise the shipping industry (OFAC, 2023) to monitor
suspicious AIS transmission gaps (“dark activity”), and geolocation “spoofing”, where AIS
data is falsified to display a ship in a false location, akin to using a VPN (Windward, 2020).
Such spoofing, reported by the UN in 2019 (U.N. Doc. S/2019/171), has rapidly proliferated
since 2021 (New York Times, Sep. 2022, Economist, Apr. 2022).

Figure 2 illustrates spoofing and dark activity for two tankers in our Iranian sanctions
violators dataset. In the top panel, the tanker’s AIS signals falsely indicated its presence in
the northern Persian Gulf while it was actually in Iran according to our ground truth data.
The tanker in the bottom panel ceased AIS transmissions for four days during which it was
also observed in Iran.

Regulators (OFAC, 2020), and industry experts (e.g., Wolsing et al. (2022)) suggest mul-
tiple categories of sanctions violation predictors to detect such activity: (i) tanker identity
change, (ii) using risky country flags, (iii) ship-to-ship transfers, (iv) irregular trajectories
(that are thought to indicate falsified routes), (v) anomalous locations (where tankers typi-
cally do not tread), and (vi) dark activity. In addition, more sophisticated players are also
advised to use satellite data for detection (OFAC, 2023, Economist, Apr. 2022), e.g., from
the Sentinel-1 mission. Figure A-1 in the Internet Appendix displays three of these images
as an example, with further accompanying details.

We show in the next Section that detection remains highly challenging, even if this advice

is followed diligently by compliant parties.

1.2 The Refinitiv disclosure

On 16 August 2023, the maritime Al firm Windward made its sanctions risk classifications
for oil tankers publicly accessible via the London Stock Exchange Group’s (LSEG) Refinitiv
Eikon. This data platform, originally started by Reuters, and Bloomberg are the two most
widely used business information platforms in the world — Bloomberg has a 33.4% market

share, while Refinitiv Eikon has 19.6% across 190 countries worldwide (Investopedia).

PAIS was originally designed for collision avoidance. Vessels over 300 gross tonnage must carry AIS
equipment (IMO, 2000). This data has been utilized in academic research before (e.g., Brancaccio et al.
(2020)), is also used for sanctions compliance, (U.N. Doc. S/2019/171, Kilpatrick (2022)), and even flag
state registries have used it to de-flag ships (Lloyd’s List, Feb. 2020, Oct. 2020).


https://ofac.treasury.gov/media/932391/download?inline
https://windward.ai/blog/going-dark-is-so-2019/
https://www.nytimes.com/2022/09/03/world/americas/ships-gps-international-law.html?smid=url-share
https://www.economist.com/science-and-technology/2022/04/16/tracking-ships-at-sea-can-help-catch-sanction-busters
https://ofac.treasury.gov/media/37751/download?inline
https://ofac.treasury.gov/media/932391/download?inline
https://www.economist.com/science-and-technology/2022/04/16/tracking-ships-at-sea-can-help-catch-sanction-busters
https://www.investopedia.com/articles/investing/052815/financial-news-comparison-bloomberg-vs-reuters.asp#:~:text=Refinitiv%20Eikon%2C%20which%20uses%20Reuters,which%20uses%20Dow%20Jones%20data
https://assets.publishing.service.gov.uk/media/5f045c173a6f4023c607da61/TS_5.2020_Amendment_Int_Conv_SOLAS_1974.pdf
https://lloydslist.com/LL1130992/Gabon-deflags-Iranian-tanker
https://www.lloydslist.com/LL1134420/Tanzania-de-flags-tankers-for-illicit-transfers-of-Iranian-crude
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Figure 2: In this figure, solid and dashed lines show the trajectories of two tankers in the Persian Gulf, as
given by their AIS signals. White arrows indicate the direction of movement. The top plot shows a case of
spoofing, i.e., a tanker which is placed at an Iranian port by our dataset of sanctions-violating tankers, but
at the same time emitting falsified AIS signals (red dashed lines) showing it traveling in the northern part
of the Gulf near Iraq. The yellow solid lines show this tanker’s path before and after its Iranian port visit.
The bottom plot shows a case of dark activity, i.e., the tanker stopped emitting signals while observed at an
Tranian port (per our dataset). Marker “A” indicates the last signal before it went dark, emitted at 02:16:12
on 2021-01-23. Marker “B” shows the first signal after its dark period, emitted at 04:54:45 on 2021-01-27
not too far from A and near the Iranian coast, concluding a four-day dark period.

The release therefore marked a notable shift in the accessibility of sanctions risk in-
formation. The list itself categorizes over 400,000 vessels into Low, Moderate, High, and
Sanctioned risk tiers, leveraging over 100 million daily data points, integrating proprietary
satellite imagery and weather data with information from its clients, which include the United
Nations, the European Border and Coast Guard Agency (Frontex), and U.S. agencies such
as the Drug Enforcement Administration and the Office of Naval Intelligence (Reuters, Mar.
2016, Wired, Mar. 2020). Observers have compared Windward’s technology to military-
grade signals intelligence adapted for commercial use (RAND, 2017). The Windward list
had previously only been bought by a limited set of clients. but by publishing the data on


https://www.reuters.com/article/idUSKCN0WI2RY/
https://www.reuters.com/article/idUSKCN0WI2RY/
https://www.wired.com/story/ship-tracking-winward-ai/
https://www.rand.org/content/dam/rand/pubs/perspectives/PE200/PE273/RAND_PE273.pdf

Refinitiv Eikon — where it was available for free for six weeks, followed by a subscription fee
of approximately £270/month — this disclosure effectively democratized access to advanced
maritime risk intelligence.

To understand what might have motivated Windward to disclose this data for free —
an issue which we study in detail later — we describe here what was happening with the
company around that time. Windward was the first pure-play maritime data company to
publicly list on an exchange, with a market capitalization of approximately £126.5 mln in
December 2021. But by the second week of August 2023, right before it disclosed the list on
Refinitiv, this value had steadily declined to only £35 mln (about $42 mln; see, e.g., Yahoo
Finance, 2023).

However, in spite of publicly releasing the sanctions suspect list initially for free, the
disclosure was followed by a 10% increase in Windward’s stock price over the next 3 trad-
ing days. This is likely because the disclosure drew attention to, and boosted confidence
in Windward’s capabilities in sanctions compliance Al and, broadly, in maritime AI. This
increased overall sales for Windward by demonstrating the company’s capabilities and help-
ing secure new contracts — following the announcement, Windward shifted its focus toward
offering tailored solutions for both commercial and government clients (Proactive, 2023).
The stock gained further momentum in the months following; by March 2024, Windward’s
market cap had increased to around £179 mln. Finally, in December 2024, Windward an-
nounced it would go private after agreeing to a takeover bid by U.S.-based growth equity
firm FTV Capital. The acquisition valued Windward at £216 mln.

2 Information shocks and market-based enforcement

2.1 The disclosure’s effect on the difficulty of detecting violators

We first assess whether Windward’s list helps third parties predict which tankers are about
to be sanctioned in the near future. Such predictive ability is crucial for third parties’ risk
management; e.g., if a bank ended up unknowingly lending to such a tanker, the loan amount
might be at risk if the tanker got sanctioned.

To do so, we first take the view of a third-party that uses AIS-signal-based ship-tracking
data, as well as satellite imagery, as recommended by authorities in Section 1. We assume
that these third parties use these data to estimate Machine Learning (ML) models, which
allow for the most flexibility (e.g., various non-linear combinations of the above predictors),
and are designed for such prediction exercises. Specifically, we employ decision trees and

neural networks. We use 10-fold cross-validation to fine-tune model parameters; the sample
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https://finance.yahoo.com/news/windward-ltd-lon-wnwd-shares-093557710.html?guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAJobn1mLHj5YxNW_58sKrHc0V8PIXnHB1KMns5tRYI4nP23UOXPaMShTjRH_ulUwXNPxkgB_OxSJnlf-mUPNMTfRPqlQgtuNV9UBGTP0DCyYdaZTj-DwfEVbbYxWH95_JYEij08UvVzfGzP-p9PfRq9-G_N5hDm6HnRj_cHt9j8L&guccounter=2
https://finance.yahoo.com/news/windward-ltd-lon-wnwd-shares-093557710.html?guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAJobn1mLHj5YxNW_58sKrHc0V8PIXnHB1KMns5tRYI4nP23UOXPaMShTjRH_ulUwXNPxkgB_OxSJnlf-mUPNMTfRPqlQgtuNV9UBGTP0DCyYdaZTj-DwfEVbbYxWH95_JYEij08UvVzfGzP-p9PfRq9-G_N5hDm6HnRj_cHt9j8L&guccounter=2
https://www.proactiveinvestors.co.uk/companies/news/1029531/windward-shares-swell-on-ai-maritime-contract-wins-1029531.html

is randomly divided into 10 sub-samples, models are trained with nine sub-samples, leaving
one for validation. This procedure is repeated 10 times to select the best hyper-parameter
combination based on McFadden’s pseudo-RQ. Detection performance is evaluated from the
best cross-validated model using its pseudo—R2.

Our goal here is to predict which tankers will be sanctioned between August 2023 and May
2024 (the end of our sample), using data up to July 2023. First, we train ML models based
on the sample from August 2022 to July 2023 using tankers sanctioned during the training
period as our targets (i.e., we exclude tankers sanctioned before August 2022). Then, for
out-of-sample prediction, we focus on the tankers that have not yet been sanctioned until
July 2023, and average model predictions from a decision tree and a neural network. The
predictors, including both AIS-based and satellite-based indicators, are described in Internet
Appendix B.

To compare Windward’s predictive ability, a simple metric is to rank tankers by our
model-predicted probabilities and select the top 25% — the same proportion as Windward,
and then compare the number of tankers correctly predicted to be subsequently sanctioned.
Among 69 tankers that are sanctioned post-July 2023, our list of the top-25% only contains
27, while Windward’s list contains 65, demonstrating its substantially superior accuracy.
More formally, as we show in Panel A of Table 1, the pseudo—R2 with which to-be-sanctioned
tankers can be predicted by ML models using public data alone (i.e., AIS+satellite) is 4.4%.
In contrast, optimally combining Windward with the public data (0.55 X public data +
0.45 X zero-one dummy of Windward’s risk label) raises pseudo-R’ to 15.4%." Panel B of
the Table shows the importance of individual predictor variables in terms of the drop in
pseudo—R2 when each is left out — and again reveals that Windward’s list is by far the most
important of these.

Next, we benchmark Windward’s relative accuracy against AIS-based alternatives using
a “ground truth” dataset on sanctions-violating oil tankers in Iran. This unique dataset lists
all non-Iranian-flagged tankers seen in Iran’s Persian Gulf waters in January 2021 (total of 33
tankers), and is collected by an anonymous source in the Middle-Eastern shipping industry
via text messages from port agents, brokers, and charterers. While the provenance and scale
of the dataset limit its usefulness, it offers a rare opportunity to test detection models against
a set of confirmed breaches — something missing in the literature (Wolsing et al. (2022)).”

Internet Appendix Table A-2 Panel C shows that Windward classified 27 out of these 33

listed violators as high/moderate risk, whereas our models detected only 17 at best, even at

4Figure A-6 in the Internet Appendix shows how different weights on these two approaches affect overall
pseudo—st7 in particular that public data-based ML still has value even after the Refinitiv disclosure.
®We intend to make this dataset publicly available to facilitate replication and further studies.
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Table 1: Out-of-sample predictability of future sanctioned tankers

This table reports the out-of-sample predictability of future sanctioned tankers based on public data (AIS
data and satellite images) or public data combined with Windward risk labels. The training sample spans
from August 2022 to July 2023, and the testing sample spans from August 2023 to May 2024 (end of our
sample). In panel A, we report the model performance measured by the out-of-sample pseudo—R2. For the
column “AIS + Satellite”, we average model predictions from a decision tree and a neural network. For the
column “AIS + Satellite + Windward”, we use the optimal linear combination between public signal and
Windward risk labels (a zero-one dummy). In panel B, we report the predictor importance measured by the
reduction of the out-of-sample pseudo—R2 when setting the corresponding predictor(s) to zero.

Panel A: Model Performance

AIS + Satellite AIS + Satellite + Windward

pseudo-R* 4.35% 15.38%
Panel B: Predictor Importance

Windward 11.03%
Satellite Detection 2.69% 1.05%
Identity Change 0.03% 0.00%
Risky Flag 0.57% 0.18%
Irregular Trajectory 0.66% 0.33%
Ship-to-ship Transfer 2.67% 1.06%
DBSCAN Outlier 1.20% 1.03%
Dark Activity 0.00% 0.87%

a 90% confidence level. While these results are not directly comparable — since Windward
may have flagged tankers based on activity beyond January 2021 — its significantly higher
detection rate is notable. Moreover, even UANI’s “The Ghost Armada” list — also based on
activity not restricted to January 2021 — recognized just 10 of the 33 violators at the time
of the Refinitiv disclosure, further underscoring Windward’s superior accuracy in detecting
sanctions violators.

Finally, we find that market participants were aware of, and attentive to, the disclosure:
Figure A-5 in the Internet Appendix shows how Windward’s homepage views saw a sharp

increase following the list’s release.

2.2 Real effects of the disclosure on suspect tankers

Here we examine the real effects of the Refinitiv disclosure on suspect ships, focusing on
(i) tanker fixtures (i.e., freight rates or rental rates negotiated between a shipowner and a
charterer), (ii) tanker route changes, and (iii) ownership transitions.

We start by estimating the effect of Windward’s high/moderate risk classification on
affected tankers’ fixtures in a matched-sample Differences-in-differences (DiD) framework.

Fixtures are measured in standardized Worldscale units, allowing for easy comparison across
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contracts (see Internet Appendix E.3 for details). We examine the change in fixtures around
the disclosure for tankers labeled as high /moderate risk, and compare them to counterfactual
tankers — otherwise identical ones, but labeled by Windward as low risk. The challenge lies
in constructing such counterfactuals, and we use two methods to do so.

First, we use propensity score matching (PSM), introduced by Rosenbaum and Rubin
(1983); this method looks to match a treated, i.e., a high/moderate risk tanker, to a low risk
one which had the same ex-ante propensity of being classified as high/moderate risk based
on public data. We present summary statistics and balance tests — which show that the
matched tankers are ex-ante very similar to the treated ones — in Internet Appendix Table
A-4. This method is intuitive, and allows for standard DiD plot visualization.

In this framework, treatment effects for high-risk tankers are estimated as follows:

7
fizture,; ., = { Z BZH X high_risk; X ]I{tzl}} + oy + Vst ikt (1)
=6

where fizture.,, is the WS rate for contract ¢, tanker ¢ (with tanker type k) in month t;
high_risk; equals one for tankers labeled as high-risk in Windward’s list, and zero otherwise;
«; is tanker fixed effects, and v, is timeXtanker-type fixed effects. We are interested in the
average treatment effect on the treated (ATT) for high-risk tankers, given by the coefficient
series { BlH }ll_ﬁ. To keep interpretation simple, we first exclude tankers classified as moderate
risk from the sample.

Plot A in Figure 3 shows that the PSM-DiD estimated coefficients in the pre-period
{BZH }[:1_6 are insignificant, indicating a lack of pre-trends. Post-disclosure, fixture rates
for high-risk tankers drop immediately in August by about 20 WS units compared to the
matched control group, a change that persists until the end of our sample in March 2024. To
assess the impact on tanker earnings, consider that the average fixture for high-risk tankers
in July 2023 was 126.8 WS units (Internet Appendix Table A-4). A 20-unit drop in August
implies a 15.8% revenue decrease (20/126.8). Note that this decrease reflects the market
reaction to the Windward-induced change in the risk of tankers violating sanctions, not
actual violations.

Next, in Plot B of Figure 3 we examine the impact of the information shock on tanker
routes, i.e., the propensity of newly labeled high/moderate risk tankers to show up in Ira-
nian, Russian, or Venezuelan territorial seas (defined using data from the Flanders Marine
Institute). The dependent variable is a zero-one indicator of AIS signals emitted within the
territorial seas of these countries each month. Our test design mirrors the fixtures analy-
sis from the previous section. This plot shows estimated coefficients {BZH }1_21_6, which show

probabilities of passing near sanctioned countries. Pre-period coefficients show a lack of
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A. Change in fixtures B. Change in routes
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C. Change in ownership

Figure 3: Plot A. shows the time series of coefficients (i.e., average treatment effects on the treated,
ATT) estimated with PSM-DiD to examine the change in fixtures for high-risk tankers from Feb 2023 to
Mar 2024 (end of our fixture data). 0 indicates the Refinitiv disclosure in Aug 2023. The propensity
score is calculated by regressing the high-risk tanker indicator on pre-period tanker characteristics using ML
methods: average outputs from a decision tree and neural networks, with variables described in the Internet
Appendix B. We match tankers within each tanker type and calculate weights based on propensity scores
and a Gaussian kernel with a bandwidth of 0.01. Then we regress fixtures (trimmed at the 1st and 99th
percentiles) on indicators of high-risk tankers interacted with period dummies, controlling for tanker fixed
effects and timextanker-type fixed effects. 95% confidence intervals using standard errors double clustered
by tanker and timeXtanker-type levels are shown. Plot B. shows analogous coefficients to examine the routes
taken by high-risk tankers. The dependent variable equals one in a month when a tanker passes within 12
nautical miles of Iran, Russia, or Venezuela (only before 2024) from Feb 2023 to Mar 2024. Plot C. shows
analogous coefficients to examine the effect of the disclosure on the probability of tanker owner changes for
high-risk tankers. Our proprietary tanker ownership data contains six snapshots: Dec 2022, Mar, Jul, Sep,
Dec 2023, and Mar 2024. The dependent variable is a zero-one indicator of owner changes by comparing
the owner names across two snapshots. Since the time spans between consecutive snapshots are different,
we make them comparable by annualizing the owner change variable. The pre-period includes Dec 2022 -
Mar 2023 and Mar - Jul 2023. The post-period includes Jul - Sep 2023, Sep - Dec 2023, and Dec 2023 - Mar
2024.
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pre-trends. Post-period, there is a gradual drop reaching about 10 percentage points at the
end of our sample.

Finally, in Plot C of Figure 3 we examine whether tankers newly classified as high/moderate-
risk become harder to sell after the disclosure. This hypothesis is based on the fact that many
sanctions regimes explicitly prohibit transactions involving violating entities (e.g., see Coun-
cil Regulation (EU) 833/2014 on such restrictions, Skadden, 2024). Here, we use proprietary
tanker ownership data from Drewry, showing owner names and countries in six snapshots
between December 2022 and March 2024. The dependent variable equals one if owner names
differ across two snapshots and zero otherwise. To account for different time spans between
snapshots, we annualize the ownership change variable. Plot C shows that the disclosure
has indeed reduced the turnover of high /moderate-risk tankers (which we merge together in
this panel due to small sample sizes here), making them less desirable.

While this visual evidence is suggestive, and post-period coefficients in Figure 3 are
uniformly lower than the pre-period ones, month-by-month estimation is noisy. To mitigate
noise, we aggregate post-period indicators into a single dummy Iy, and estimate ATT
separately for high-risk and moderate-risk tankers. In a matched sample with high- and

low-risk tankers, we run the following regression:
fizture,.; . = BH X high_risk; X Lysoy + o + s + €ciprs (2)

where BH is the ATT for high-risk tankers. We perform a similar estimation for moderate-
risk tankers by replacing high_risk; with moderate_risk;. The first three columns in Panel
A of Table 2 presents the PSM-DiD regression results for fixtures.

Next, we check for the robustness of our findings to using a different DiD estimator, as
in Abadie (2005). Compared with ad hoc PSM-then-DiD implementations, Abadie (2005)
provides a semiparametric matching DiD estimator that identifies the ATT under parallel
trends in untreated potential outcomes and allows for time-invariant unobserved hetero-
geneity. The estimator reduces reliance on parametric outcome specifications and offers a
more standardized procedure with established asymptotics. Further details are in Internet
Appendix E.

Since Abadie (2005) is a matching-based DiD estimator and does not include regression-
style fixed effects, we pre-process outcomes to net out additive macro trends. Specifically,
for each month t we subtract the cross-sectional mean outcome among untreated fixtures,
and in an alternative specification we subtract the month-by—tanker-type mean (and thus
adjust for tanker-type-level monthly changes in freight rates) among untreated fixtures. We

then implement the Abadie (2005) matching estimator on first-differenced outcomes. Results
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are robust to omitting this pre-processing, and we report all three versions of the estimated
ATT, i.e., using raw fixtures, fixtures demeaned by time, and fixtures demeaned by time and
tanker type, respectively.

The first three columns in Panel B of Table 2 shows results from this method for fixtures.
The sample size in panel B is smaller than in panel A, because Abadie (2005)’s estimation
uses a tanker-level sample (not a tanker-month level one), and also excludes tankers without
both pre- and post-period fixtures (because the dependent variable is post-period average
fixture minus pre-period average fixture).

The results show that, after the information shock, the fixtures of high-risk tankers
decreased by an average of 16.45 WS units, ranging from 13.75 to 20.71 units. This translates
to a 13% earnings drop (16.45/126.8), relative to the counterfactual. No significant change
is observed for moderate-risk tankers.

Of note here is that while matching on observables reduces imbalance, we recognize that
unobserved differences between risky and low-risk tankers may still bias our estimates. To
mitigate such concerns, we assess the robustness of our results. Our evidence suggests that
they remain similar, not only across multiple methods and bandwidth choices, but also when
we use logistic regression for propensity scores, drop August 2023 (to allow about two weeks
for the disclosure effect to come into force), omit Russia, and use bootstrap standard errors.
We present these robustness tests in Table A-5 in the Internet Appendix.

The middle three columns in Table 2 present the estimation of ATT on route changes,
combining post-period months into a single dummy, as we did for fixtures. As AIS signals
are observed much more frequently than fixtures, this route test uses more observations.

The PSM-DiD results in Panel A show that high-risk tankers are about seven percentage
points less likely to pass close to sanctioned countries, with no significant effect on moderate-
risk tankers. The average probability of signals in these areas is 40 percentage points for
high-risk tankers in July, it drops by 17% (6.8/40) in the post-period. Panel B using Abadie
(2005)’s semiparametric DiD yields similar results. Overall, our evidence suggests that high-
risk tankers avoid approaching sanctioned countries after the disclosure.

The last three columns in Table 2 present results on tanker ownership changes in a
regression setting similar to the other columns. Our evidence shows that that after the
information shock, high-risk (moderate-risk) tankers are 16.4-18.5 (14.6-16.8) percentage
points less likely to change owners. This represents a 37% drop in liquidity for high-risk
tankers, relative to a pre-disclosure annualized turnover of 45.4 percentage points (17/45.4).

In one further exercise (reported in Internet Appendix Table A-6) we examine whether
U.S. and U.S.-allied charterers start avoiding tankers classified as high or moderate risk

by Windward. Our evidence shows a significant drop in high-risk tankers usage by U.S.
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Table 2: Difference-in-differences analysis

This table reports the coefficients (i.e., average treatment effects on the treated, ATT) estimated with PSM-DiD and Abadie (2005)’s semiparametric
DiD to examine the change in (i) fixtures, (ii) routes, and (iii) ownership for high/moderate-risk tankers after the Refinitiv disclosure. The sample
period is from Feb 2023 to Mar 2024, and the post-period starts from Aug 2023. In panel A, we match tankers within each type and calculate
weights based on propensity scores and a Gaussian kernel with a bandwidth of 0.01, 0.03, or 0.05. Then, we do DiD estimation in the matched sample,
controlling for tanker fixed effects and timeXxtanker-type fixed effects, with standard errors double clustered at the tanker and timeXtanker-type levels.
In panel B, we implement Abadie’s method by collapsing our sample into two cross-sections by calculating each tanker’s pre- and post-period averages
of the dependent variables. Since Abadie’s estimator is derived without directly accounting for macro trends, we manually subtract the cross-sectional
mean by tanker type to account for timeXxtanker-type fixed effects. We trim the fixtures at the 1st and 99th percentiles each month to avoid the
influence of outliers, and derive standard errors as in Abadie (2005). *, ** *** denote significance at the 10%, 5%, and 1% level, respectively.

Panel A: PSM-DiD

I1. Showing AIS signals

Dependent variable I. Fixtures . . ITI. Owner change
near sanctioned countries
Bandwidth 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05
ATT for High Risk -16.06%** -15.15%* -14.61%* -0.073*¥*¥*  _0.072%FF  _0.071FF* -0.183***  _0.169***  -0.164%**
[-2.69] [-2.39] [-2.31] [-3.69] [-3.76] [-3.79] [-3.25] [-2.91] [-2.87]
Obs. (tanker-months) 5,378 5,574 5,574 39,246 39,246 39,246 11,402 11,402 11,402
ATT for Moder. Risk -0.68 -1.20 -1.49 -0.016 -0.015 -0.015 -0.168%*** -0.159** -0.152%**
[-0.17] [-0.32] [-0.41] [-1.01] [-1.02] [-1.05] [-3.30] [-2.79] [-2.50]
Obs. (tanker-months) 6,081 6,083 6,083 43,820 43,820 43,820 11,776 11,776 11,776
Time X Type FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Tanker FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Panel B: Abadie (2005) Semiparametric DiD
. by time . by time . by time
raw by time X type raw by time X type raw by time X type
ATT for High Risk S18.42%FF% 0. 71¥¥F 13, 75%** -0.067*¥*¥*  -0.067FFF  -0.060%** -0.185%**  .0.184***  _(0.170%**
[-3.56] [-4.47] [-3.16] [-4.01] [-4.03] [-3.60] [-3.30] [-3.29] [-3.04]
Obs. (tankers) 1,036 1,036 1,036 2,543 2,543 2,543 2,346 2,346 2,346
ATT for Moder. Risk -3.74 -5.09 -0.51 -0.012 -0.012 -0.008 -0.168***  _0.167***  -0.146%**
[-0.88] [-1.40] [-0.15] [-0.97] [-0.96] [-0.62] [-3.20] [-3.18] [-2.77]
Obs. (tankers) 1,190 1,190 1,190 3,139 3,139 3,139 2,421 2,421 2,421




charterers, while effects for U.S.-allied charterers are not statistically significant.

Finally, we examine whether selection issues affect our data, specifically if the information
shock altered high/moderate-risk tankers’ reporting of their fixture contracts to our data
vendor. Results in Internet Appendix Table A-7 show no evidence of changes in reporting
by risky tankers. Note that our ownership change data does not come from reports to

Refinitiv, and is not affected by such potential selection issues.

3 Sanctions and Disclosure through the Lens of a Model

In this section, we develop a dynamic structural model of intermediaries and sanctions,
and calibrate it using data from the oil shipping market and our Windward event-study
results from the preceding section. The model (i) enables us to quantify the impact of
the Refinitiv disclosure on two key actors for whom data is unavailable — actual sanctions-
violating tankers (as opposed to suspected violators detected by Windward) and exporters
of sanctioned oil. Additionally, (ii) the model suggests one way to reconcile Windward’s
ex-ante low valuation with the substantial changes its disclosure produces. This particular
modeling choice also provides one explanation for why Windward might have been stuck in
a low-valuation trap, which might, in turn, have led them to disclose the list at low cost to
publicize their accuracy. Finally, (iii) we use the model to generate a counterfactual where

sanction penalties are increased further.

3.1 Theoretical Framework
3.1.1 Environment

We model the oil-shipping sector. Our economy consists of oil exporters and tankers.

e ‘Rogue’ (R) exporters deal in sanctioned products (e.g., Iranian oil companies), while
‘Clean’ (C) exporters deal in non-sanctioned, legally-traded products (e.g., U.S. oil

companies).

e Tankers are either ‘Good’ (G), i.e., those that have never carried sanctioned oil, or
‘Bad’ (B), i.e., those that have done so at least once in the past. A Bad tanker cannot
revert back to being Good, reflecting the fact that tankers can be sanctioned for past
violations. Once a Bad tanker is sanctioned and put on a designated list it cannot
be hired by any exporter. However, some Bad tankers are not sanctioned yet, and
these are the main source of risk for an exporter in our model, who faces penalties and

disruptions if such tanker is sanctioned while in their employ.
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e Third parties like banks, insurers, tanker charterers, etc. who provide intermediary

services face similar risks if engaging with Bad tankers. Therefore, we do not explicitly
include them in the model for simplicity; one can think of them as all being folded into

the Clean exporter category.

Rogue exporters know which tankers are Bad because they have employed them pre-
viously. Clean exporters only know that a proportion A of all tankers are Bad (A is
common knowledge). They use a noisy detection technology that classifies a portion
A of tankers as High-risk (H), and the rest as Low-risk (L). We assume a stationary

environment where the proportion of Bad tankers, )\, is constant.

Tankers know if they are Bad, and can also infer their risk label (H or L) from the fixture
quoted to them by a randomly matched Clean exporter (we assume, for simplicity, that
search frictions prevent tankers from shopping for rates from different Clean exporters).
Rogue exporters do not know the fixtures quoted by Clean exporters (who compete

with them for tankers), and hence cannot infer risk labels.

3.1.2 Timeline

We assume the following sequence of events each period:

1.
2.

Clean exporters optimally choose detection technology and assign risk labels to tankers.

An aggregate i.i.d. mean-zero shock € to the oil trading revenue of all exporters realizes,

reflecting unpredictable oil price changes that exporters cannot hedge ex-ante.

. All exporters choose simultaneously freight rates to offer to tankers: Clean exporters

choose pr and py for L and H tankers, respectively, and Rogue exporters choose pg

and pg for Good and Bad tankers.

Each tanker receives two freight rates: one from a randomly matched Clean exporter

and another from Rogue exporters, and decides whom to engage with.
The sanctioning authority sanctions (a subset of) violators.

Each player receives a payoff and proceeds to the next period (tankers continue to the

next period only if not sanctioned in this period).

3.1.3 Clean exporters’ detection technology

Signals

There are N Clean exporters, indexed by i. To detect whether a given tanker j is Bad, Clean
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exporters rely on three potential sources of information (we omit here the tanker index j for

brevity).

,CO

(i) A common signal s¢ " based on public information, available at zero cost and with

.. -2
fixed precision o, ":

s7" = T(Bad Tanker) + ¢, ¢ ~N(0,07), ¢ L u. (3)

(ii) A private signal sf’p Ti, with precision o, 22
sy 7" = I(Bad Tanker) + &, & ~N(0,05,). & 1L u,¢, (4)
Clean exporter ¢ can reduce o¢; by paying a (continuous) cost:
Qoes) = rogs, (5)
where k is a constant calibrated by matching moments.’

(iii) A signal s that can be bought for a fixed price P" from a specialized data provider
like Windward. In our model, such a profit-motivated data intermediary plays a key

role, as its data release represents the information shock that we examine.

As Windward integrates information from multiple sources, that include the United
Nations, European Border and Coast Guard Agency (Frontex), and various U.S. agen-
cies, among others, we model Windward’s signal as a noisy version of a signal SA, which

is only available to the sanctioning authority:

W=ty v ~N(0,02), vl ucct (6)

s* determines the probability of sanctioning the given tanker, as specified below.

The common signal in Eq. (3) reflects due diligence conducted using public data. The
private signal in Eq. (4) captures the requirement imposed by the sanctioning authority that
market participants do their own due diligence, which is motivated by its belief that these
participants have private information on suspicious sanctions-violating behavior. Although
we lack details on the exact private information Clean exporters have, industry reports reveal
the equilibrium cost they pay for due diligence, enabling us to calibrate relevant parameters.

)

Windward’s signal s in Eq. (5) — unlike the common signal s”” — contains informa-

tion about the authority’s signal which determines sanctions. However, Clean exporters do

This functional form satisfies the no-arbitrage condition in information acquisition: the cost of in-
dependently acquiring two signals with (im)precision o4 and op and then optimally combining them,
Q(o4) + Q(op), is the same as the cost of directly acquiring a signal with the combined (im)precision,

Q(1/\ o2 +05).
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not know the precision of this signal ex-ante, i.e., they do not know Uz before the disclosure,
but form beliefs about it. In Section 3.2.3, we specify how their beliefs can be calibrated
from Windward’s observed equity market value. For now, let &, 3 denote Clean exporter i’s

posterior belief on Windward’s precision.

From signals to risk labels:

Clean exporters optimally choose whether to buy Windward’s signal, to what extent they
want to improve the precision of their private signal by paying the associated cost, and how
to combine the signals. For the latter, we assume that they weigh each signal by the inverse
of its noise variance.

Let x = 1 (x = 0) indicate a Clean exporter’s decision to buy (not buy) Windward’s
information (we study a symmetric equilibrium in which all Clean exporters choose the
same action). Before the disclosure, the expected precision of the combined signal is o >+
cr£_2 +y- (02 +52)"", and the cost is Qoe) + x - P". After the disclosure, clean exporters
have free access to s and can observe its precision. Accordingly, the combined signal’s
precision becomes 052 + ng +y- (o) +02)", and the cost reduces to Qo¢).

Let s denote the optimally combined signal. Clean exporters assign risk labels to tankers
by applying a threshold K to sY: a tanker is classified as High-risk (H) if s exceeds K , and
as Low-risk (L) otherwise. The threshold K is chosen to satisfy

E(sC 2 K) = A (7)

3.1.4 Sanctions

The sanctioning authority allocates to each tanker j monitoring resources a;, which depend

on a noisy signal sf that it receives about the tanker’s type:

a; = f(s7), and f'(:) >0, (8)

where

s;-l = [;(Bad Tanker) + u;, u; ~ N(0, Ui)- 9)

To simplify analysis, we specify

ity = 2 (10)
S = —
77 Elexp(s])]
so that a; is always positive and E[a;] = 1.
The probability that a given tanker j is sanctioned is:
IP;(sanctioned) = a; - [ - I;(Bad tanker) + 75 - I;(deal with R)], (11)
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where I;(Bad tanker) equals one if this tanker is Bad and zero otherwise, I;(deal with R)
equals one if the tanker is currently transporting sanctioned oil and zero otherwise, 7 is
the probability per unit of resource that the tanker is sanctioned for past violations (i.e., for
being Bad), and 7, is this probability of a current violation (i.e., transporting sanctioned oil
from Rogue exporters in the current period). The parameters, m; and 7y, reflect legal and

other technical constraints that the authority faces in sanctioning tankers.

3.1.5 Beliefs about exposure to sanctions-related penalties

Tankers: Depending on its type and risk label, each tanker belongs to one of four groups —
GL, GH, BL, or BH. Each tanker j knows its group and the sanctioning authority’s resource
allocation mechanism as in Eq.(8), but does not know a; (i.e., exactly how intensely the
authority is monitoring it). Given Eq.(11), we can obtain the expected sanction probabilities
for tankers in each group, conditional on their information set. Adding to the group index a 0
or 1, depending on whether the tanker is currently transporting sanctioned oil (i.e., whether

I(deal with R) is 0 or 1), these conditional probabilities are:

Waro = 0, wery = Ela|G, L] - m,

wepo = 0, W = ElalG, H] - 7y,

wgro = Ela|B,L]-m, wpry = Ela|B, L] - [m + 7]

wppo = Ela|B,H]-m, wp = Ela|B, H] « [m + my], (12)

where we again omit the tanker index j for brevity. Note that wgry = Wage = 0 because
Good tankers know that they will not be sanctioned due to past violations; this assumes

that these tankers are always “cleared” if investigated for past violations.

Clean exporters: They calculate the expected probabilities of L and H tankers being

sanctioned as follows:

oC = Qcr - + QpL T
= >—— ~Wgrot+t 7~ WBL
L Qcr + QpL 0 Qcr + QprL 0
_C CQG’H _ QBH _
Wy = —=—————Wayo+ ~———=—WgH 13
i Qcu + Qpu 0 Qcu + Qpu 0 (13)

where Q¢r, Qcr, @pr, and Qpy are the number of tankers in each group that Clean ex-
porters hire in equilibrium. These probabilities imply that Clean exporters realize that the
proportion of Good vs. Bad tankers among the tankers that they hire is likely to be different

from the proportion of Good vs. Bad tankers among all tankers, as tankers of specific types
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could be more likely to engage with them."

Rogue exporters: They only know tanker types but not their risk labels. So they calculate
the expected sanction probabilities for the G and B tankers that they hire as:

R R
ol = GL o GH .
G - R R GL1 R R GH1,
Qcr + Qcy GL GH
R R
_R QBL _ + QBH O (14)
B = 7 WLl t —— 5 WBH1-
Qpr + Qpy Qpr + Qpgy

3.1.6 Exporters’ optimization

The objective of the exporters is to maximize profits. The per-unit oil trade revenue for

. R
Clean exporters, 7, and for Rogue exporters, 7, are

F=r+é, =g, (15)
where r and " are mean values and ¢ is the aggregate shock, uniformly distributed over
[—o,0]. For simplicity, we assume a fixed ratio %, which implies a constant discount on
sanctioned oil.”

Exporters’ costs include (i) information acquisition cost (only for Clean exporters), (ii)
payments to tankers, and (iii) penalties if the tanker they employ is sanctioned. The sanc-
tion penalties are 2% and 2" for Rogue and Clean exporters, respectively. We assume that
s zC, as a Rogue exporter’s entire oil cargo could be impounded if a tanker carrying it
is caught and sanctioned, which is significantly more costly than the delays and penalties
facing a Clean exporter for hiring a Bad tanker that now gets sanctioned but is currently

carrying unsanctioned oil.

Clean exporters: They first choose their detection technology (i.e., o and x), and then
set prices p; and py. Given the i.i.d. environment, the decisions on detection technology
and prices are taken period by period.

We first consider the Clean exporters’ price decision. Since tankers and exporters are

randomly matched in a pair (Section 3.1.2), each Clean exporter occupies a % portion of the

"Note that here each party’s beliefs depend on quantities that they do not know ex-ante (e.g., Clean
exporters never observe Qg and Qg separately — they only observe the sum, as they cannot distinguish
between G and B tankers). In a rational expectations equilibrium, however, each party will make guesses
about these unknown components such that their beliefs are consistent with model solutions (and therefore
with each other).

8Consistent with the data in the months surrounding the Refinitiv disclosure (see, e.g., Inside Shipping,
2024).
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market, and does not compete with other Clean exporters. For a given detection technology,
each Clean exporter optimally chooses prices to maximize profits:

1= max %(QGL + Qp)(F = py, — w0y 2°) + %(QGH + Qpn)(F = py — w52°), (16)

{pL.pH

where u_)g and u_)g are expected sanction probabilities defined in Eq.(13). The @Q’s are

functions of the prices, which are derived from tankers’ optimization (as described below).
We use backward induction to derive Clean exporters’ detection technology. Let IT denote

the expected equilibrium profit, given these exporters’ belief about Windward’s precision &, 2

(again, symmetry implies same equilibrium beliefs):

L2 S
(o¢, x;0,) = E[]5,] (17)
The optimization problem is then
L2 w
max M(o¢, x;0,) — Qoe) = x - P, 18
e T(og 1) = o) ~ X (19)
with optimality conditions
0, if T(0¢, 1) = T(0¢, 0) < P,
Oll(oe, x)  0Q(o¢) . W
= ;X =11, if II(o¢, 1) = I(0¢,0) > P, (19)

00'5 80'5
Oor1, ifI(oe,1)—T(oe,0)=P".

Rogue exporters: They solve the optimization problem only for prices:

R R \,-R R _R R R R \,.R R _RR
{n}ga)é} (Qar + Qo )7 —pg —wgz ) + (Qpr + Qpu)(7 —pp — Wz ), (20)
pG’ypB

where wGR and w§ are expected sanction probabilities defined in Eq.(14).

3.1.7 Tankers’ optimization

Tankers observe freight rates (fixtures) quoted to them by Clean and Rogue exporters and
decide whom to engage with. Because a Good tanker becomes irreversibly Bad if it en-
gages with Rogue exporters, tankers must consider their continuation values when making
decisions.

Let Vi and Vp denote the values of Good and Bad tankers, and Vi1, Vor, Var, Var
denote the values further conditional on risk labels. Let 5 = P[H|B] and 0, = P[H|G].

The tanker values satisfy the following relations:
Va=0cVan + (1= 05)Var, Vg =08Vey +(1-0p)Vpi. (21)
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The tankers’ Bellman equations are

_ R .
VGL=E[maX{pL—wGLo’Z+5VG7 pG—C—wGLl‘Z'FﬂVB}:I,
_ R .
Ven =E|:max{pH_wGH0°Z+ﬁVGa Pg — ¢~ WgH1 'Z+5VB}],
_ R .
VBL :E[max{pL—wBL()'Z“‘ﬁVB, pB—C—me’Z"‘ﬂVB}]»
_ R .
Vpr = E[max{pH — Wppo* 2+ PV, pp—¢—Wpm 'Z"‘ﬁVB}]- (22)
where wgro, War1, ete., are expected sanction probabilities defined in Eq.(12), and ¢ is a
random cost that a tanker incurs each period when dealing with Rogue exporters. Observed
only by the tanker before choosing an exporter to deal with, this cost is assumed to be
uniformly i.i.d. over [0,¢] and allows us to obtain interior solutions for tanker supply. Such
a cost may arise from efforts to avoid detection, reflecting tanker-specific variables like its
location, route, and violation technology.

The penalty imposed on a Bad tanker when sanctioned is z, assumed for simplicity to

equal the tanker’s entire value. Given discounting, this penalty is
z = 5VB (23)

The critical values ¢; at which tanker j would be indifferent between dealing with a Clean

or Rogue exporter are then:
R _ _ R _ _
Ccr = Pg —PL — (wGLl - wGLo)Z - B(VG - VB)> CBL = Pp —PL — (wBLl - wBLO)Z>
R _ _ R _ _
CGH = Pg —PH — (wGHl - wGHo)Z - /B(VG - VB)’ CBH = PB —PH — (wBH1 - wBHo)Z-

For ¢; below (above) such a critical value, the tanker prefers to deal with a Rogue (Clean)

exporter. Using these critical values, we derive that

OcE [% +pH} +(1- QG)E[% +pL] = [fcweno + (1 = Oc)waro]z

V= o ;o (24)
HBEI:(CBQ}EI) +pH] +(1- 93@[% +pL] — [0pwpro + (1 = Op)wprolz
v, = o , (25)

where the expectation is over next period’s aggregate shock €.

3.1.8 Equilibrium

A stationary equilibrium is characterized by: (i) Clean exporters’ choice of detection tech-
nology (i.e., o¢ and x); (i) Clean and Rogue exporters’ freight rates PE(E), pr(é), pr(8),
pr(€), where € refers to the aggregate shock in the current period; and (iii) tankers’ decision

rule based on the critical values cqr(€), can(€), cgr(€), cgr(€), which satisfy
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e Optimality: Clean exporters optimally choose detection technology; Clean and Rogue

exporters optimally set prices to maximize their profits; tankers maximize their values

e Market clearing: the market clears for all. In particular, for Clean exporters (@,,) and

Rogue exporters (Qﬁy) this implies, respectively

Quy=An (1-2). @ =4, (). wye{GLGH BL BH),

Where AGL = (1 - )\)(1 - 0G)7 AGH = (1 — )‘)er ABL = )\(1 - 03)7 and ABH = )‘HB

The model solution is described in detail in Internet Appendix F.

3.2 Model calibration and fit
3.2.1 Directly calibrated parameters

We focus on changes in market equilibrium in response to the disclosure. We directly cal-
ibrate seven parameters. The discount factor § is set to 0.85, accounting for both time
discounting and tanker depreciaution.9 Based on Lloyd’s List (2023), we set the propor-
tion A of Bad tankers to 0.1. We normalize r to one — this is Clean exporters’ mean
oil trade revenue per voyage, or, more precisely, their profits before shipping costs. This
revenue amounts to 15.5 mln for an average tanker (i.e., 0.8 million barrels at $70 per
barrel with a 27.7% before-shipping profit margin — this was the oil industry’s operating
margin for 2023 Q2 as per CSI Market, 2023). The mean revenue of Rogue exporters is
= (7T0%0.277—4)/(70x0.277) = 0.794, assuming a $4 per barrel discount (as for Russian
exports to India in the second half of 2023, Reuters, Sept. 2023).

Given that OFAC’s civil monetary penalties typically depend on the amount of the
sanctions-violating transaction (CFR, Appendix A to Part 501), we set the sanction penalty
2¢ for Clean exporters dealing with Bad tankers equal to the freight cost they pay, i.e.,
around $3 mln in 2023 (e.g., Inside Shipping, 2024, 0.8 million barrels at $4/barrel), which
implies z = 3/15.5 = 0.194. We set the sanction penalty 27 for Rogue exporters based on
the median value from actual cases of seized oil (e.g., U.S. Attorney’s Office, 2024), resulting
in 2" = 50/15.5 = 3.226.

3.2.2 Parameters derived from moments matching

We calibrate the remaining nine parameters by matching nine moments. These parameters

are: the per-unit-resource sanction probabilities m; and 7y, max operation cost when deal-

gAssuming a time-discounting rate of 0.95, a 10% scrap value, and a 20-year further life cycle (given these
are 10-15 year old tankers) gives 0.95 X exp(log(0.1)/20) =~ 0.85.
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ing with Rogue exporters ¢, volatility of oil trade revenue o, precision of the public signal
o ?_ precision of the authority’s signal 052, precision of the Windward’s signal o, ? Clean
exporters’ belief on Windward’s signal &,, and coefficient on information acquisition cost .

To identify the sanction probabilities, m; and 7y, and precision of the authority’s signal,
o, 2, we mainly rely on three moments: actual proportion of sanctioned tankers, the disclo-
sure’s effect on tankers’ fixtures, and the disclosure’s effect on tankers’ routes (these come
from the DiD estimations in Table 2). These moments are particularly relevant because the
actual proportion of sanctioned tankers mainly depends on 7, and 75, and the disclosure
effects are determined by the authority’s signal precision (as the disclosure releases a noisy
version of the authority’s signal) and the sanction probabilities m; and 7.

We identify the maximum operation cost ¢ and the volatility of oil trade revenue o
mainly by matching two moments: the volatility-to-mean ratios for low- and high-risk tanker
fixtures. The two moments facilitate identification because ¢ mainly contributes to the levels
of low- and high-risk tanker fixtures, while o contributes to the volatility of fixtures.

We use the two pseudo—RQS of sanction predictability, based on the pure-public signal
and the Windward-and-public-data combined signal, to pin down the precision of the public
signal, o, 2, and the Windward signal, o, ®. We use Windward’s market value to uncover
Clean exporters’ belief in Windward’s precision &, 2, as explained in the following section.

Finally, we identify the coefficient on information acquisition cost x by assuming this cost
to be the major component of compliance costs and then match the ratio of non-compliance
costs to compliance costs (see Secureframe (2025) and Globalscape). The moments and the

parameters derived from moments matching are in Panels B and C of Table 3.

3.2.3 Calibrating a7,

Recall that in Section 3.1.3 we left flexible the Clean exporters’ beliefs about Windward’s
precision o, ?. The most straightforward assumption would be to impose full rational expec-
tations, i.e., o, = 0,.

However, adopting this assumption results in a significant divergence between the model-
implied values and the observed data, most notably with respect to Windward’s valuation.
Specifically, under this assumption our model would imply the valuation of its signal about
suspect tankers to be $5,405 mln in July 2023, whereas in fact the total equity valuation of
Windward at that time was $42 mln.

This divergence is so substantial that it is robust to many alternative modeling assump-
tions about the structure of the shipping market. Intuitively, a data provider like Windward’s
valuation depends on the value of the signal they provide, which, in turn, depends on market

participants’ expected incremental profits from buying that signal, which is at most $27 mln
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in July 2023 given stock market pl"iCGS.lO This suggests that no market participant believed
that buying Windward’s signal would increase their profits beyond this amount (i.e., a high
7,). However, as demonstrated in Section 2.2, the revenue of high-risk tankers declined by
13% following the Refinitiv disclosure, and these tankers started avoiding sanctioned ex-
porters. Both of these findings indicate a large spillover of high-risk tankers in the Clean oil
shipping market, reducing Clean exporters’ shipping costs. Such a reduction, in turn, would
imply that their incremental profits could be significantly higher than $27 min. But had
these exporters anticipated such large incremental profits (i.e., had they correctly believed
g, = 0,), they should have been willing to pay much more for Windward’s data, and its
valuation should have accordingly been much higher.

Moving away from the equality 7, = o,, however, brings forth the challenge of pinning
down what exact value to assign to 7, in the calibration among the many possibilities. Next
we explain how we do this, by referring back to Windward’s equity valuation.

Clean exporter i’s willingness-to-pay for Windward’s signal, ¢;, depends on her belief

about Windward’s precision &, * as follows:
0:(5,) = M0, 156,) — M(0¢. 0:.5,), (26)

where H(-;&i) is the expected profit as in Eq.(18) and its argument one or zero denotes
whether Windward’s signal is bought or not. Let the true value of Windward’s information
be §. We assume that Clean exporters’ prior belief about ¢ is distributed N(u;s, X5). Addi-
tionally, each Clean exporter receives a noisy signal (e.g., from tankers newly sanctioned in
every period or from Windward providing a trial version of their list before purchase) about
the true value of 6: x; = § + n;, with independent noise 7; ~ N(0,3,). Each Clean exporter
1 rationally updates her willingness-to-pay based on her signal x; and Windward’s market
value M":

6; = E[8|z;, M ]. (27)

The absence of near-arbitrage opportunities implies that

MY =) b+ (28)

=1

"%While Windward’s total equity valuation was $42 mln, it had other lines of business besides the suspect
tanker list. In the Internet Appendix F.4 we show how we can derive an upper bound of the valuation
specific to its suspect tanker list.
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where € ~ N(0,X,) comes from noise traders."” Solving Eq.(27) and Eq.(28) gives

. MY
5i:M5+A(xi_M6)+B(T_M5)> (29)

b b)) N(N-1)x%,A?
where A solves Z—”(N —1)(N + E_:)A?’ +A—-1=0and B = —E€+N(N—1)7IEWA2'

details are in the Internet Appendix F.3.

The derivation

Note that, since Windward is a start-up with very short history and sanction rules are
constantly updated yet little new information on violators is provided every period, a Clean
exporter who has not yet decided to buy Windward’s signal (and maybe has a trial version
with a small subset of the data to decide whether to buy) would likely face an information
environment characterized by (i) sufficiently noisy priors on Windward’s accuracy (X5/%, —
¢>0), and (ii) a sufficiently noisy signal z; (X./%, — 0). In the Internet Appendix F.3, we

show that under these circumstances A — 0 and B — 1, and hence

0 = ——. (30)

Eq.(30) combined with 6,(5>) = (og, 1; 52) — (o, 0; 52) allows us to uncover Clean ex-
porters’ belief from Windward’s market value. In such an equilibrium, Clean exporters are
indifferent between y = 0 and x =1 (i.e., buying or not buying Windward’s signal), as per
Eq.(19), assuming that Windward is competitively priced (i.e., it’s value reflects the entire

surplus it generates).

3.2.4 Implications of 7, # 0,

The fact that Clean exporters’ ex-ante 7, did not equal the true o, reveals an important
friction in the market. Had these exporters been able to recognize Windward’s true accu-
racy in detecting violators, they would have expected much higher incremental profits from
its information, and hence would have been willing to pay for Windward accordingly. A
significantly higher valuation would have motivated the creation of similar companies who
could charge appropriately for detecting suspected violators in different domains. This would
represent an endogenous market-based resolution of the detection challenges.

However, as we demonstrated above, this solution in not supported by the data. With
diffuse priors about Windward’s precision and inadequate additional information to update
beliefs over time, it is rational for Clean exporters to try to infer this precision by learning
from the company’s market value. And this means that a wide range of beliefs and asso-

ciated valuations can be justified in equilibrium. If the market somehow underestimated

" For example, if M W< Zf\il Si, all Clean exporters can buy Windward together to realize the surplus.
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Windward’s value, noisy learning would have prevented convergence to the truth. Such a
situation, where Windward gets stuck in a value trap, could then justify the company re-
leasing their signal at very low cost to demonstrate its true accuracy (and thus benefit its
other lines of business). In fact, Windward’s stock market valuation had indeed dropped to
half of its IPO value and stayed at that level or below for over a year before the disclosure
— i.e., the undervaluation was indeed persistent.

Two further features in the data are consistent with this interpretation: (1) Windward
tried to maximize the reach of its disclosure by releasing the list via Refinitiv Eikon, a widely
used platform, rather than on its own website. This is consistent with the point of the
disclosure being publicity. (2) The demonstration led to increased demand for Windward’s
other services, as the market revised its beliefs about the firm’s overall detection capabilities,
helping offset any revenue lost from giving away the sanctions list for free. Following the
disclosure, Windward’s valuation actually rose sharply, and the firm was ultimately taken
private in March 2025 at a valuation of $270 mIn. This indicates that Windward was right
about the market updating its beliefs positively about their business in such a way that the
disclosure would end up being value increasing, i.e, ex-ante the disclosure was justified given

the later value increase.

3.2.5 Model fit

We report the moment matching results in Table 3 Panel B. In particular, the disclosure
effects on high-risk tankers’ fixture and route in the model (i.e., -0.126 and -0.184) are close
to the values in the data (-0.13 and -0.17), and the remaining moments are similarly well
matched.

We also compare the values of other model variables that are not targeted in our calibra-
tion with the data. First, the volatility of oil trade revenue derived from moments matching is
o = 0.26, consistent with the Oil Volatility Index OVX around 28% in 2023 (OVX measures
oil price volatility, and hence, earnings volatility). Second, the model-implied freight rate
premium paid by Rogue exporters relative to Clean exporters is around between 100-200%,
as per Panel D in Table 3. This is closer to the high end of the sanctions premium reported
in the media for Russian oil delivered to Indian and Chinese ports in August 2023 (e.g.,
Inside Shipping, 2024, which reports calculations from Argus Media). Third, model-based
tanker values range between $40 to $60 min, comparable to the actual values for 15-year-old
tankers as per Xclusiv (2023), and noting that the average age of the crude oil tanker fleet
in 2023-2024 was 13-14 years, per AXSmarine (2025).

Overall, our model-based estimates appear to align reasonably well with their correspond-

ing values reported by alternative sources, offering some confidence in the reliability of the
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Table 3: Model parameters, moments matching, and implied quantities
This table presents the directly-calibrated model parameters in Panel A, the moments that we match in
Panel B, the parameters derived from moments matching in Panel C, the imputed quantities in Panel D.
These results are discussed in Sections 3.2 and 3.3.

Panel A: Directly calibrated parameters

Variable Calibration method Symbol  Value
Discount factor time-discounting (0.95) X depreciation B8 0.85
Proportion of Bad tankers see Section 3.2.1 A 0.1
Mean oil trade revenue (Clean exporters) $15.5m, normalized to one T 1
Mean oil trade revenue (Rogue exporters) $4 per barrel discount rf 0.794
Sanction penalty (Clean exporters) $3m, comparable to shipping costs P 0.194
Sanction penalty (Rogue exporters) $50m, based on the median value from 2 3.226

actual cases of seized oil

Panel B: Matched moments

Moment Model analog Data  Model
Proportion of sanctioned tankers E[Q5, . +Q% ]

(average of pre- and post-Windward periods) 2 0.7%  0.89%
Disclosure’s effect on high-risk tankers’ fixtures E[pP°** —pP"|Post H] 0.13 0.126

(DiD estimation in Table 3) E[pP*|Post H] e e
Disclosure’s effect on high-risk tankers’ routes E[bP°°* —pP"° |Post H] 017 0.184

(DiD estimation in Table 4) E[bP"¢|Post H] e e
Annualized volatility of low-risk tankers’ fixtures std[ph™¢] 077 0.788

before the disclosure (divided by mean) E[py* ’ ‘
Annualized volatility of high-risk tankers’ fixtures std[p%r“] 0.81 0.829

before the disclosure (divided by mean) Elpyr ] ’ :

2 i .

Pse.udo-R for pre(iilctmg to-be-sanctioned tankers See Internet Appendix F 4.3% 4.4%

with the public signal
Pseudo-R” for predicting to-be-sanctioned tankers .

with the public- Windward-combined signal See Internet Appendix 154%  15.4%
Valuation of the Windward’s signal (based on * *

the share price one day before the disclosure) II{og, 1) =110, 0) $2Tm $2Tm
Non-compliance costs divided by compliance costs E[(QUE+Qu)wE 2° +(QU s +QY S w5 €] 971 970

(see Secureframe (2025)) Qo) ’ :
Panel C: Parameters derived from moments matching
Variable Symbol  Value
Sanction probability per unit of resource (previous violation) m 2.6%
Sanction probability per unit of resource (current violation) o 3.0%
Max operation cost when dealing with Rogue exporters c 0.89
Volatility of oil trade revenue o 0.26
Noise volatility in the public signal o¢ 0.68
Noise volatility in the authority’s signal Ou 0.52
Noise volatility in the Windward’s signal (true value) Oy 0.10
Noise volatility in the Windward’s signal (Clean exporters’ ex-ante belief) Oy 8.28
Coefficient on information acquisition cost (X103) K 2.30
Panel D: Imputed quantities (price in $§ mln per trip)

. R R

Period E(pw) E(pz) E(pz) E(pc) Ve Ve
Pre-Windward 2.85 2.99 4.76 9.60 43.90 61.14
Post-Windward 2.59 2.91 4.60 9.74 40.48 59.08
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quantities generated by the model.

3.3 Model implications

A3: Expectation on authority's resources allocation

----- —— E[a|GL] e ]
254 —— E[a|GH]
" --- E[a|BL]
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Figure 4: This figure presents the predictions from the calibrated model from Section 3. We solve the
model by discretizing the ag%regate shock € on a grid. We plot the average model outcomes for the values
of € as functions of pseudo-R”, which is backed out from the classification precision p in the model. In each
subplot, two vertical dashed lines indicate the pre- and post-Windward precisions, which correspond to 18%
and 42% pseudo—R2 of predicting Bad tankers (or 4.3% and 15.4% pseudo—R2 of predicting to-be-sanctioned

Windward's precision (o)

tankers), respectively.

In Figure 4, we present the model implications of the Refinitiv disclosure by varying the
precision of Windward’s signal, o, ®. We focus on the pre-period equilibrium where almost

no Clean exporters buy Windward’s signal — which we model as Windward’s signal precision

per-tanker spending
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being zero before disclosure — and the post-period where everyone has access for free. The
two vertical dashed lines indicate these two equilibria, respectively.

To better interpret the disclosure effect, we quantify how the disclosure changes Clean
exporters’ detection accuracy, measured by the pseudo-R2 for predicting Bad tankers. Our
model can provide this calculation for two reasons. First, we can empirically estimate the
ps.eudo—R2 for predicting which tankers will be sanctioned — 4.3% in the pre-period and
15.4% in the post-period, as used in moments matching — which in our framework is jointly
determined by Clean exporters’ detection accuracy and the authority’s signal precision. Sec-

,co

ond, under our information structure — where the public signal sECOm g independent of the
authority’s signal SA, and Windward’s signal sV is a noisy version of s — our model can
identify Clean exporters’ detection accuracy separately from the authority’s signal precision.

C,com

The assumed independence between s* and s is consistent with the authority’s encour-

agement of market participants’ own due diligence, and the correlation between s* and 5"
is supported by Reuters (Mar. 2016), and Wired (Mar. 2020). The pseudo-R* formula is in
Internet Appendix F. Our calibration indicates that the disclosure raises Clean exporters’
pseudo-R” for predicting Bad tankers from 18% to 42%.

Panel A of Figure 4 illustrates tankers’ expectations about the authority’s resource allo-
cation. First, because the authority allocates resources based on a noisy signal about tanker
types, Bad tankers rationally anticipate that they tend to face more monitoring than Good
tankers, for each risk label. Second, as the precision of Windward’s signal improves, High-risk
(Low-risk) tankers expect that they will face more (less) monitoring. This is because in the
post-period, risk labels are derived based on Windward’s signal, which contains information
about the authority’s signal. Therefore, with higher precision of Windward’s signal tankers
can learn more about the authority’s resource allocation from risk labels. This learning is
driving the disclosure effect on route changes.

Panel B shows that as Windward’s precision improves, Rogue exporters pay slightly
higher freight rates to hire Good tankers (i.e., E[pg] increases) and lower rates for Bad
tankers (i.e., E[pg] decreases). This is because, with better information, Clean exporters
are more likely to detect Bad tankers, and hence the bargaining power of these tankers
relative to Rogue exporters decreases, leading to lower freight rates. Knowing that, Good
tankers require higher compensation from Rogue exporters for dealing with them and thus
turning into Bad tankers thereafter.

Panel C shows the probabilities of tankers engaging in transactions with Rogue exporters.
High-risk tankers are less likely to engage with Rogue exporters. Importantly, as Windward’s
precision improves, the likelihood of engaging with Rogue exporters declines more sharply for

High-risk tankers, as those tankers learn from their risk labels that the sanctioning authority
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now allocates more monitoring resources to them. These results align with our empirical
findings on route changes.

Panel D sheds light on the aggregate implications for Rogue exporters. The black line
shows that the per-tanker spending of Rogue exporters increases, which is due mostly to the
increase in the freight rates paid by Rogue exporters to Good tankers (from Panel B in the
figure). This increase is not offset by the drop in freight rates that these exporters pay to
Bad tankers because there are many more Good tankers than Bad tankers.

The blue line in Panel D shows that as Windward’s precision improves, the total number
of oil tankers engaging with Rogue exporters decreases, consistent with Panel C. Quanti-
tatively, the information shock accounts for a 7.7% drop in Rogue exporters’ total hiring
of tankers. This shortfall, of course, can translate into a drop in exports of sanctioned oil
itself, but the magnitude of that drop may not be one-for-one. This is because some of these
tankers can be replaced by other means, e.g., through oil pipelines — although this likely
involves higher costs of transportation (if the costs were lower, then Rogue exporters would
have used these means rather than tankers in the pre-period).

Panel E in the figure shows the relation between Windward’s precision and the equi-
librium freight rates (i.e., the fixtures E[p;] and E[py]) from Clean exporters. First, as
precision increases, High-risk tankers’ freight rates sharply decrease. This is because with
higher precision the H label indicates a higher probability of a Bad tanker, so Clean exporters
require a larger discount for hiring such a tanker.

Additionally, Panel E reveals a counterintuitive result: as precision increases, Low-risk
tankers’ freight rates also decrease. This outcome arises from two opposing forces, which we
derive from the first-order conditions of exporters’ optimization. The first is an information
effect: with improved precision, the L label more desirable as it indicates lower sanction
risk. The second is a competition effect: as precision increases, High-risk tankers that are
increasingly excluded from the Rogue exporters’” market now relocate to the Clean market,
intensifying competition and putting downward pressure on freight rates for Low-risk tankers.
Our quantitative analysis indicates that the competition effect outweighs the information
effect, resulting in a net decline in freight rates for Low-risk tankers. In the following section,
we empirically test this counterintuitive prediction using a shift-share design.

Panel F in the figure shows that as Windward’s precision improves, Clean exporters have
lower incentive to acquire private information. Our quantitative analysis here shows that as
Windward’s precision increases, Clean exporters quickly switch their information source to
Windward’s signal. The substitution occurs because of the decreasing marginal benefits of
information for Clean exporters. Intuitively, this follows from the fact that the generation

of private information for violator detection is expensive in the data; and the fact that when
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Windward discloses its list, the market responds substantially — implying that the Clean
exporters’ private signal had not managed to generate Windward’s information on its own.
This suggests a high cost-to-accuracy ratio of the private signal; so, as long as Windward
detection information is at least somewhat precise, Clean exporters stop generating their
signal.

This intuition supports the view that providing better public information crowds out
efforts to gather useful private information — which the sanctioning authority might itself
lack." However, given that this private information had a high cost-to-accuracy ratio, the
disclosure of Windward’s more accurate signal improves enforcement overall (Section 3.3
contains further details).

Finally, in Table 4, we estimate the aggregate (annual) effect of the information shock
on the four relevant parties in terms of dollar values. We analyze the changes in earnings
for exporters and tankers between the pre- and post-Windward periods. We find that the
shipping cost for Rogue exporters increases by 1.2% (from 9.26 to 9.37 mln per tanker-trip)
due to the increase in pg, while the cost for Clean exporters decreases by 3.5% (from 2.98 to
2.87 mln per tanker-trip) due to reductions in both p; and py. On the tanker side, fixture
income decreases by 5.5% for Bad tankers (from 3.05 to 2.88 mln per tanker-trip) and by
2.0% for Good tankers (from 3.66 to 3.58 mln per tanker-trip). To estimate the aggregate
annual effect, we do the following back-of-the-envelope calculation: we multiply the above
dollar values by the number of tankers and 3 trips per year (from the data). Therefore, the
disclosure leads to $1.1 bln annual losses for Rogue exporters and Bad tankers, and $1.9 bln

overall gain for Clean exporters and Good tankers.

3.4 Counterfactual analysis: Increasing penalties under noisy de-

tection

Finally, to further explore implications for enforcement design, we use our model to study
a key counterfactual: what would happen if the sanctioning authority increased the penalty
(z) on Clean exporters who were found to be using sanctions-violating tankers."”” This
scenario aligns with much of the focus in political and media discussions, as well as literature
suggesting that aligning the incentives of all parties with that of the sanctioning authority

should enhance enforcement.

1QConsider, for example, a company asked to deliver satellite surveillance equipment to the address of a
pizza shop; the firm should reasonably suspect foul play (see Huneke (2023) for further examples) and flag
that counter-party; this is something that the authority cannot do.

"Recall that for Rogue exporters, we already assumed that the sanctioning authority impounds the entire

. . R .
oil cargo — i.e., the penalty 2" cannot be increased any further. Hence we focus on Clean exporters here.
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Table 4: Model-implied overall effects
This table reports the aggregate annual effect on earnings for the four relevant parties — Rogue exporters,
Clean exporters, Bad tankers, and Good tankers (in mln dollars). We estimate by multiplying per-tanker-
trip earnings by the number of tankers and 3 trips per year (the average number of trips per tanker from
our fixtures data).

Sanctions violators Sanctions-compliant agents

R exporters Bad tankers C exporters  Good tankers

(price paid) (price received) (price paid) (price received)
Pre-Windward (per tanker-trip) 9.26 3.05 2.98 3.66
Post-Windward (per tanker-trip) 9.37 2.88 2.87 3.58
Percentage change 1.2% -5.5% -3.5% -2.0%
Aggregate effect (annual, $ mln)
(-/+ indicates loss/gain) -562 -510 4,299 -2,443
Total (annual, $ min) 1,072 1,855

(-/+ indicates loss/gain)

In Figure 5, we conduct this analysis by varying z from 0.258 (4 mln dollars) to 0.516
(8 mln dollars) and fixing detection precision at the pre-Windward level. We focus on the
effect of the value redirected away from violators, as calculated in Table 4.

The figure reveals that increasing sanction penalties in the presence of noisy detection
has little effect on enforcement. This is due to two reasons: first, as Clean exporters cannot
perfectly observe tanker compliance status, increasing penalties raises the expected cost of
inadvertently hiring a violating tanker. In response, Clean exporters reduce their overall
demand for tanker services to manage this risk. This hurts both Good and Bad tankers.
Of course, Bad tankers are hurt more, as Clean exporters start especially avoiding high-risk
labeled ones that are more likely to be Bad. However, this shrinkage in demand from the
compliant sector increases tanker supply and lowers cost for Rogue exporters, making the

total value transferred away from violators in response to higher penalties negligible.

3.5 Empirically testing the counter-intuitive model implication

In this final section, we test the main counter-intuitive model implication that after the
disclosure, low-risk tankers receive lower fixtures from Clean exporters due to increased
competition in that market (as shown in Panel E of Figure 4). We conduct tests exploiting
charterer-level variations.

Ideally, we would want to measure the incremental tanker supply to each charterer af-
ter the information shock, but this quantity is unobservable. We circumvent this issue in

designing our test by relying on the intuition of “shift-share instruments” (Bartik, 1991).
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Figure 5: This figure presents the counterfactual analysis of increasing the sanction penalty. The z-axis is
the sanction penalty for Clean exporters (i.e., parameter z) expressed in million dollars. The y-axis is the
model-implied effects of the value redirected away from violators, as calculated in Table 4. For comparison,
we plot the effect from the information shock using a dotted line.

Let gi, for k € 1,..., K, be the varying exposures to increased competition (i.e., “shifts”)
of K groups of tankers. Let also s;; be the proportion (i.e., “share”) of group k tankers
that charterer i deals with (), s;x = 1). Then the share-weighted sum of exposures ) , sy,
serves as an ex-ante measure of charterer-level cornpetition.14

To ensure variation in the exposures g, we group tankers by product type — i.e., re-
fined products (e.g., gasoline and diesel), unrefined (e.g. crude oil), and unclassified prod-
ucts, hence K = 3. Among the refined-product tankers in Windward’s list, 24% are
high/moderate-risk tankers, while this proportion is 36% for unrefined, and 34% for un-
classified products tankers. This variation suggests that charterers with more unrefined or
unclassified products are more likely to experience increased supply from risky tankers after
the disclosure. Note that this strategy nets out other common/aggregate changes in fixtures
by exploiting charterer-level variation in exposures to supply shocks.

Using this measure, we focus on low-risk tankers and run the following regression:

fixtu'rec,i,k,t = 50 X H{High—competition} + Bl X H{High—competition} X H{tZO} +FE + €ci kit (31>

The dependent variable is low-risk tankers’ fixtures, and Iiyigh-competition} €quals one if the
charterer-level shift-share competition measure exceeds a cross-sectional cutoff (e.g., top

50%, 40%, or 30%), and is zero otherwise. Our model predicts a negative DiD coefficient /3.

"“TFor this measure to work, one would need stickiness in the charterer-tanker relationship. We verify this
in the data — 40% of the tankers engage with charterers that they have worked with in the preceding two
years.
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Table 5: Testing the counter-intuitive model implication: Competition spillovers

We test the model’s implication that the disclosure reduces low-risk tankers’ freight rates (competition ef-
fects), exploiting charterer-level variation in a DiD framework. Since tankers carrying unrefined and unclas-
sified products are more likely to be classified as risky by Windward, the charterers with a larger proportion
of such tankers are expected to face relatively higher supply of low-risk tankers after the disclosure, leading to
higher competition among these tankers and lower freight rates received by them. The dependent variable is
low-risk tankers’ fixtures. The explanatory variables are the high-competition indicator Iifigh-competition} and
its interaction with the post-period indicator. I{figh-competition) €quals one if the charterer-level shift-share
competition measure, as described in Section 3.5, exceeds certain cross-sectional cutoff (top 50, 40, or 30%),
and zero otherwise. The standard errors are double clustered at the tanker and timeXtanker-type levels. *,
*xRRE denote significance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Low-risk tankers’ fixtures

Cutoff = top 50% Cutoff = top 40% Cutoff = top 30%
H{High—competition} X ]I{tzo} -12.893%* -14.304** -15.866**
[-2.15] [-2.48] [-2.62]
Obs. (tanker-month) 4,999 4,999 4,999
Time X Tanker Type FE Yes Yes Yes
Tanker FE Yes Yes Yes

Estimation results in Table 5 are consistent with model predictions: higher competition
corresponds to lower freight rates for low-risk tankers after the disclosure. The results are
robust across various cutoffs for the high-competition indicator, with estimated effects rang-
ing from 12.9 to 15.9 WS units. These results not only provide an out-of-sample test for our
model, but suggest that policymakers should be mindful of negative spillovers on compliant

parties in equilibrium.

4 Conclusion

This paper shows that enforcement failures primarily stem from third parties’ inability to
reliably identify violators, rather than from weak compliance incentives. We make three
contributions.

First, we empirically show that better information on violators alone can improve enforce-
ment outcomes. When a sanctions-risk list from the maritime analytics firm Windward.ai
became public on Refinitiv Eikon, suspect tankers experienced sharp earnings declines and
started avoiding sanctioned countries.

Second, we develop a dynamic structural model to quantify the market-wide consequences

of improved detection. The model implies that $1.4 billion annually was redirected away from
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violators. Compliant exporters benefited, but — counterintuitively — compliant tankers saw
lower earnings.

Third, we use the model to explain why, despite these large impacts, markets persistently
undervalue information from vendors like Windward. The mechanism is a feedback loop
between beliefs about detection accuracy and firm valuation.

These insights carry meaningful implications for policy design. If the core constraint
on enforcement is information rather than incentives, then simply increasing penalties or
tightening regulations will yield limited gains, as our model shows. Instead, improving
detection capabilities may be the most effective path toward strengthening the enforcement

of market-based sanctions.
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Internet Appendix for
“The Information Constraint in Market-based Sanctions

Enforcement”

Avi Dutt, Abhiroop Mukherjee, George Panayotov, Debjit Roy, Xudong Wen

A Do financial institutions care about sanctions risk:
Evidence from an LLM

We focus on the top 50 U.S. financial firms (measured by total assets) from Compustat with
a GICS sector code of 40. We download their 10-K reports from SEC websites for 2015-
2023. We select paragraphs mentioning “sanction” for textual analysis using GPT-4, where

we input the paragraphs and ask:

Question: Does the following paragraph mention economic sanction, for example, enforced
by OFAC, and the economic-sanctions-related risk, cost, uncertainty to their business? Out-

put Yes or No, and give a brief reason.

Here are two examples of responses from GPT-4:

Input: for example, the current tensions between the United States and Russia due to the
Russian invasion of Ukraine that began in February 2022 and the resulting actions by the
United States and a number of other countries in response (including economic sanctions
imposed on Russia and the provision of military supplies to Ukraine) could result in retalia-
tory cyber attacks by Russian threat actors on our business or on third parties with which

we do business that have a material impact on our business.

Response: Yes, the paragraph mentions economic sanctions imposed on Russia and the
resulting potential risks, costs, and uncertainties to the business due to possible retaliatory

cyber attacks.




Input: governmental regulatory authorities may institute administrative or judicial pro-
ceedings that may result in censure, fines, the issuance of cease-and-desist orders, trading
prohibitions, the suspension or expulsion of a broker-dealer or member, its officers, registered

representatives or employees or other similar sanctions.

Response: No, the paragraph does not mention economic sanctions, specifically enforced
by OFAC, or the related risk, cost, and uncertainty to their business. It only discusses
possible outcomes of administrative or judicial proceedings that can be brought against a

broker-dealer or member.

. J

As the examples show, although both inputs mention “sanction,” GPT-4 can determine
whether it’s relevant to our focus. Next, we ask GPT-4 to generate possible reasons for

sanctions compliance risk.

Question: Please list potential reasons why a firm thinks sanctions compliance is challeng-

ing.

Using the 10 reasons provided by GPT-4, we then input the previously identified economic-

sanction-related paragraphs for each report and ask the following question:

Question: Read the provided firm annual report and mark the reasons from the following
list why this firm thinks sanctions compliance is challenging.

Complex regulations

Frequent updates

Multiple jurisdictions

Identifying sanctions violators

Internal communication

Staff training

Screening technology

Risk assessment

© 00 oy O o0l MOl

Record keeping
10. Enforcement penalties
Give your answer ONLY in a sequence of reason IDs separated by a comma, for example, if

your answer is the first 5 reasons, output 1,2,3,4,5

Based on GPT-4’s responses, we calculate the percentage of firms related to each reason and

report the five most important reasons in Figure 1.



B Construction of predictors

B.1 AIS-based predictors

The detailed descriptions for the construction of AIS-based predictors are listed below:

e Identity Change: the indicator equals one if a tanker has changed its MMSI number

or flag in the preceding six months, as reported in AIS, and zero otherwise. Windward

(2022) has listed identity change as one of “the tried and true techniques of deceptive

shipping practices”.

e Risky Flag: the indicator equals one if a tanker’s flag is among the top 10 that have

been associated with moving Iranian and Venezuelan oil (Lloyd’s List (2021)). These

are the flags of Panama, Cameroon, Vietnam, Djibouti, Cook Islands, Tanzania, Togo,

Palau, Russia, and Belize.

e Ship-to-ship Transfer (STS): we construct two types of predictors. The first equals one

when the AIS navigation status is recorded as “At Anchor” or “Moored” at locations

that are at least x km away from the nearest port, and zero otherwise. We set x to be 10

or 20 (i.e., two versions of this predictor). We obtain port coordinates from the World

Port Index (WPI) published by the Maritime Safety Information and supplement this

list with estimated ports via a data-driven clustering method, DBSCAN;, to reflect

ports that are newly built or have been omitted in the WPI. The second equals one

when the draft (i.e., the vertical distance between the waterline and the bottom of

the hull, which indicates how much cargo the tanker carries) changes by more than

one meter while the tanker is at least x km away from the nearest port. We again

set x to be 10 or 20 (i.e., two versions of this predictor). We include these predictors

as OFAC has listed STS as one of seven deceptive shipping practices to be vigilant

against (OFAC (2020)).

e Irregular Trajectory: we define a trajectory as irregular if a tanker’s total changes of

course within a day are abnormally high. A course is calculated from two adjacent AIS

signals, ranging from 0° to 360°, with 0°, 90°, 180°, 270° denoting north, east, south,

and west, respectively. A course change is the difference between two adjacent courses,

ranging from -180° to 180°. We sum all absolute values of the course changes in a day.

To filter out small-scale movements, we calculate the course when the distance between

two signals is above a threshold. If the distance doesn’t exceed the threshold, we move

to the following signals until the requirement is satisfied. We set the distance cutoff

to be 1, 2, or 5 km (i.e., three versions). The indicator we use equals one when the
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total course changes of a given tanker in a day are above the 95th percentile of the
distribution of all such changes within the respective month. We include this predictor
following OFAC suggestions (OFAC (2020))

e DBSCAN Outlier: this is a measure aiming to capture anomalous locations conditional
on speed and course as identified by DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) — a data-driven clustering method that has been employed
to detect marine anomalies in a shipping context (e.g., Pallotta et al. (2013)). We
first sort the data points into several groups based on speed and course, and then
perform DBSCAN within each group, i.e., we cluster conditional on speed and course.
The outliers that we find are also conditional, i.e., they deviate in certain ways from
tankers to which they are similar in other ways. The indicator in this case equals one if
a ship is identified as an outlier on a given day, whereby we set the distance parameter
of DBSCAN to be 10 or 20 km (i.e., two versions of the predictor).

e Dark Activity: equals one if the time gap between two signals is longer than T days.
We set T'=1,2,3 (i.e., three versions of this predictor). This predictor is motivated
by OFAC (2020) and Windward (2022).

B.2 Satellite-based predictors

Figure A-1 displays three images from the Sentinel-1 satellite as an example, with enlarge-
ments showing individual ships at sea. Dfy Graviti — a company specializing in aerospace
and maritime Al — helped us process these images to identify and locate ships. Their code
used for processing will be made available as part of our replication package. We construct
the following satellite-based predictors and provide detailed descriptions for constructing the

search area.

e Satellite Detection: We construct the predictors separately for detecting spoofing and
dark activity. For spoofing detection, the predictor equals one for day t if a tanker
is not seen in its corresponding search area during the period [t — r,t + r]. We set
r = 0,1,2 (i.e., three versions) recognizing that spoofing on a given day ¢ may also
imply spoofing on adjacent days (e.g., r can be viewed as a smoothing parameter for
a time series). For dark activity detection, the predictor equals one if a tanker is not

seen in its corresponding search area during its dark period.

We define search areas on satellite images that should contain given tankers, under the null
hypothesis that the tankers are not violating sanctions. If a tanker is missing from its search

area, we infer that it was likely involved in sanctionable activity. To construct each search
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Figure A-1: This figure shows examples of satellite images. These three images were taken a
little after 2:30 a.m. on the 28th of January 2021 in the Persian Gulf area. Each image covers a
rectangular sector, 250 kilometers wide. The bottom insert on the extreme right shows eight ships
as little yellow objects at sea, while the top insert above it shows at the largest enlargement level
one of these ships, with individual pixels clearly seen.

area, we estimate its center and size using the two AIS signals closest to the satellite image
(just before and after). Using both signals helps narrow the search area.

For spoofing detection, we consider three cases: (I) A stationary tanker, where both
adjacent AIS signals are emitted roughly at the same location. Here, the search area is a
circle centered around this point. Because a tanker may follow a round-trip route, we only
flag a tanker as absent from the area when the time between signals is below a set threshold.
(IT) A moving tanker with a signal near the satellite image time (within 15 minutes), where
the search area centers on this signal. (III) A moving tanker with only distant signals (e.g.,
a few hours), where we interpolate its trajectory by matching it to others passing through
the same area with a similar time span. For dark activity detection, we focus on the first
case, using the two adjacent signals just before and after a dark period.

More formally, for a given tanker (call it A) and a given satellite image at time ¢!, let t,
(t1) denote the time of the closest AIS signal just before (after) t{. Let z;, and x;, denote
tanker A’s locations as per the AIS signals at ¢ty and ;. For spoofing detection, we construct
search areas in the following three cases:

Case I: Both ty and t; are reasonably close to ¢/ and the distance between Ty, and x4,

is small. We set the maximum time window to six hours and the maximum distance to five



Raw data

Interpolation

Figure A-2: This figure illustrates interpolation of tanker trajectories in an area seen by a satellite
at time t/. The tanker’s locations are recorded in AIS at time tg < t! and ¢; > t!, with no signals
in-between (we consider only cases when both of these times are within six hours of ¢/ to limit
noise)). The black dots (z9) and (x1) denote the tanker’s locations at ¢y and ¢;. We determine
the area to be searched in the satellite image by interpolating trajectories (shown by grey lines)
of comparable tankers that passed near these points in similar time frames and directions. Then
we find the locations (shown as blue dots) of these comparable tankers at ¢/. We define the search
area as the smallest ellipse containing all blue dots with 95% probability.

kilometers. The search area is defined as a circle centered at the midpoint between z;, and
xy, with a diameter equal to max(|xy, — z4,],0.5) km.

Case II: One of t, or t; is over six hours from ¢/, but the other is within 15 minutes. We
define the search area as a circle centered on the closer signal’s location. The radius assumes
the ship could travel at a maximum speed of 15 knots (28 km/h) between the signal and ¢/,
with a minimum radius as in Case 1.

Case III: Both ty and t; are again reasonably close to t! (within six hours), but the
distance between x;, and z;, is large. In this case, we define the search area based on a
data-driven interpolation method. The main idea is to interpolate the location of tanker A
using the trajectories of other tankers that have passed near both z;, and z;,, in the same
direction and over a similar time interval.

Figure A-2 illustrates Case III, where we match tanker A to comparable tankers by
location and average speed. We collect the location of each comparable tanker at its time
corresponding to ¢! for tanker A (the blue dots in the figure). We define the search area as
the smallest ellipse that contains all of these collected locations, except those that are more
than five standard deviations away from the center of the interpolation locations. We use
ellipses to reduce the size of the search area.

To be included in the matching, we require a tanker to have sent a signal within a five-
kilometer distance from x;,, and then another one within a five-kilometer distance from z;,,

whereby the time it traveled between these two signals is within 30 minutes of the difference



t1 — tg. To increase the number of matches, we search for comparable tankers in the three-
month period between December 2020 to February 2021. We also validate our method by
sequentially leaving out signals as an out-of-sample test and show that our interpolation
method yields a successful coverage for 96% of the test cases.

When detecting dark activity, Cases II and III are not applicable, since by design the
time interval between the adjacent AIS signals is larger than a few hours — we have defined
a dark period to be at least 24 hours long. Therefore, we only consider here Case I, but
modify it so that ¢y is the last signal before a dark period, and t; is the first signal after a
tanker emerges from the dark period.

Finally, note that alternative detection methods, such as identifying ships at port, are in-
feasible because satellite images of standard resolutions cannot distinguish between multiple
vessels of similar size and shape. Furthermore, sanctions violators sometimes have altered
their vessels’ appearance (IHS-ACSS, 2022).

B.3 Summary Statistics

Table A-1 presents summary statistics for variables used in the detection of Spoofing and
Dark Activity.

C Detecting sanctions violators

C.1 Predictive Models and their Performance

To detect spoofing, we create a tanker-day sample where the dependent variable is one if
a tanker is observed in Iran (per our ground truth dataset), but its AIS signals indicate
another location; it is zero otherwise. To detect dark activity, our dependent variable is one
if a tanker is observed in Iran during a dark period exceeding 24 hours, and zero otherwise.

To optimally combine predictors, we employ decision trees and neural networks with
10-fold cross-validation to fine-tune model parameters; the sample is randomly divided into
10 sub-samples, models are trained with nine sub-samples, leaving one for validation. This
procedure is repeated 10 times to select the best hyper-parameter combination based on
McFadden’s pseudo-R?. Detection performance is evaluated from the best cross-validated
model using its pseudo-R?.

Table A-2 presents our results. Panel A reveals that our best AIS-based detection models
achieve a pseudo-R? of about 10% for detecting spoofing and dark activity. Incorporating
satellite data enhances detection only modestly, from 10% to 16%. Panel B evaluates the

incremental contribution of each predictor category. While overall pseudo-R? values remain


https://library.iccwbo.org/content/tfb/pdf/AIS_Whitepaper_IHS_IIBLP_ACSS.pdf

Table A-1: Summary statistics of detection samples

This table reports the summary statistics for the detection samples in Section 3. We separately detect
spoofing and dark activity. Panel A reports the sample sizes and Panel B reports the mean and standard

deviation of predictors. The construction of the predictors is described in Section 3.3.

indicates that the sample does not include the respective predictor.

“” in Panel B

Panel A: Sample Size

Spoofing Detection

Dark Detection

No. observations
No. unique tankers
No. unique violators

17,496 (tanker-day)

1,481
17

1,552 (dark periods)

746
20

Panel B: Predictors

Spoofing Detection

Dark Detection

Mean Std Mean Std
Identity Change 0.118 0.322 0.144 0.352
Risky Flag 0.263 0.440 0.288 0.453
Ship-to-ship Transfer
e anchor 10 km away from ports 0.218 0.413 0.363 0.481
e anchor 20 km away from ports 0.081 0.273 0.137 0.344
e draft change 10 km away from ports 0.036 0.186 0.151 0.358
e draft change 20 km away from ports 0.027 0.161 0.119 0.324
Irregular Trajectory
e distance cutoff = 1 km 0.050 0.218 0.053 0.225
e distance cutoff = 2 km 0.050 0.218 0.068 0.251
e distance cutoff = 5 km 0.050 0.218 0.079 0.269
DBSCAN Outlier
e distance parameter = 10 km 0.131 0.338 0.318 0.466
e distance parameter = 20 km 0.049 0.216 0.142 0.349
Dark Activity
e at least 2-day dark period - - 0.406 0.491
e at least 3-day dark period - - 0.244 0.429
Satellite Images
e 1-day window 0.010 0.101 - -
e 3-day window 0.028 0.165 - -
e 5-day window 0.042 0.200 - -
e during dark period - - 0.025 0.157

low, the Dark Activity and Ship-to-ship Transfer predictors are most important here, with

incremental pseudo-R? of 9.4% and 6.2%, respectively.

Overall, we find that the detection of sanctions violators is challenging, even when com-

bining numerous predictors mentioned in industry and regulatory sources, and using so-

phisticated methods/models. It is possible that governments and certain corporations with

superior data access (e.g., Starlink) do not face these issues, but most third parties lack ac-

cess to such data; and yet they are still tasked with such detection to comply with sanctions



Table A-2: Performance of ML detection models

In Panel A, this table shows detection accuracies for spoofing and dark activity, and their simple average
(“Total”), using either AIS data alone, or together with satellite data. In Panel B, Apseudo-R? for a given
category is the difference between the pseudo-R? of a full model and the same model that sets this particular
category to zero (note that all our predictors are zero-one indicators). Negative pseudo-R? or Apseudo- R?
are treated here as zero. We report simple averages of the respective Apseudo-R?’s across the tree and
neural network models, and spoofing and dark detection. In Panel C, we report the total number of tankers
that violated Iranian sanctions during January 2021 (as per our proprietary dataset), the number of tankers
among them labeled as high/moderate risk in Windward’s list, and the number of tankers detected by our
ML models. Results are shown for different confidence levels (¢l = 99%, 95%, and 90%).

Panel A: Model Performance

Model performance (pseudo-R?)

Detect Model Using only AIS data Using AIS and satellite data
Total Tree 9.1% 15.2%
NN 10.2% 16.3%
Spoofing Tree 6.7% 11.8%
NN 7.2% 13.8%
Dark Tree 11.5% 18.7%
NN 13.3% 18.8%
Panel B: Predictor Importance
Category Apseudo-R?
Satellite Detection 6.2%
Identity Change 3.7%
Risky Flag 2.8%
Irregular Trajectory 0.2%
Ship-to-ship Transfer 6.2%
DBSCAN Outlier 5.3%
Dark Activity 9.4%

Panel C: Comparison between the Windward’s list and ML-model detection

Total Violators: 33
on Windward’s list: 27
Number of violators detected
Detect Model Predictors cl =99% cl =95% cl =90%
Total Tree Satellite + AIS 5 12 17
NN Satellite + AIS 5 13 15
Tree Only AIS 3 8 14
NN Only AIS 0 5 13

rules. It is also possible that our results reflect limitations in our ground truth dataset or
models, rather than a general difficulty in detection for third party market participants — in
Section C.2, we provide a discussion and further evidence on such detection being generally

challenging, even beyond our data or models.



C.2 Is detection truly difficult?

One might question whether our results indicate a general difficulty in detection or merely

reflect limitations in our ground truth dataset or models.
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Figure A-3: The top-left (top-right) plot shows irregular trajectories for a sanctions-violating
tanker from our proprietary dataset (a sanctions-compliant tanker). The axes of these two plots
show degrees of latitude and longitude, and the red dots show the coordinates of each AIS signal
emitted by each tanker. The bottom plot shows the distribution of dark days in Jan 2021 for
tankers entering the Persian Gulf, conditional on the tanker going dark for at least half a day. The
x-axis shows bins of dark time: bin 0 is from 12 hours to 24 hours; bin z (x = 1,2,---,14) is
from z to 4+ 1 days; bin 15 is equal or greater than 15 days. The blue (orange) line represents
sanctions-compliant (sanctions-violating) tankers.

First, a closer examination of our data reveals that sanctions-evading predictors exhibit
similar patterns for both violating and compliant tankers. For example, as shown in Figure
A-3, compliant tankers (top-right) can show irregular trajectories similar to those of viola-
tors (top-left), and the dark time distributions for both tanker types overlap significantly.

Legitimate factors like weather, mechanical issues, or AIS data errors (Weng et al. (2022))

10



contribute to this low signal-to-noise ratio, compounded by sparse satellite data.

Second, evidence of detection challenges abounds, even beyond our data and methods.
For instance, only 10 of the 33 tankers from our Iran-sanctions violators dataset appear on
UANTI’s “The Ghost Armada” list, as of August 2023, illustrating the broader difficulty in
identifying violators.

Overall, detecting sanctions-violating tankers is challenging for third party market partic-
ipants. While governments and certain corporations with superior data access (e.g., Starlink)
may not face these issues, most third parties lack access to such data but are still required

to comply.

D The Refinitiv Disclosure

D.1 Windward’s sanction risk data

Figure A-4 shows a screenshot from Refinitiv Eikon illustrating Windward’s sanctions-risk
measures for one tanker (A STAR). We report the sample filtering process and the sample
size, i.e., the number of tankers, after each step, in Table A-3. Summary statistics on tankers
included in the Windward dataset are presented in Table A-4. This table also presents

balance tests on the matched sample of tankers.

Table A-3: Sample filtering

This table reports the sample filtering process and the sample size after each step, i.e., the number of tankers.

Data cleaning steps # tankers
Full tanker list from Reuters 13,997
Keep oil tankers 10,322
Keep large tankers (i.e., Medium, Panamax, Aframax, Suezmax, VLCC) 5,466
Drop tankers that were sanctioned before the disclosure 5,392
Drop tankers without AIS data (i.e., unable to calculate propensity score) 5,363
Reg. sample 1 (merge to fixture data) 3,628
Reg. sample 2 (merge to fixture data and require fixture type is WS) 2,852
Reg. sample 3 (merge to ownership data) 3,312
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Figure A-4: This figure shows a screenshot from Refinitiv Eikon illustrating Windward’s sanctions-
risk measures for one tanker (A STAR). The tanker is classified as high-risk with respect to the
Iranian sanctions, because Windward has found strong evidence that it has changed its ID and/or
has been involved in spoofing, and also has had long dark periods (transmission gaps) that can be
associated with suspicious activities. Windward has also found some (weaker) evidence that the
tanker was involved in ship-to-ship transfers.
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Table A-4: Summary statistics of Windward’s tankers sample

This table reports the summary statistics for the sample of tankers we use to examine the effects of the
disclosure event. Panel A reports sample sizes and tanker classification. Panel B reports the balance tests
on tanker characteristics between treated (i.e., high- and moderate-risk) and control (i.e., low-risk) groups.
To construct the control group, we conduct propensity score matching (PSM) for each treated tanker within
its tanker type, i.e., we require matched tanker(s) to have the same tanker type. The propensity score is
calculated by regressing the high/moderate-risk tanker indicator on pre-period tanker characteristics using
ML methods: average outputs from a decision tree and a neural network. The variables used to construct
the propensity score are the same as the list in Panel B. We calculate matching weights based on a Gaussian
kernel with a bandwidth of 0.05. The variable differences and corresponding ¢-value are reported. For this
tanker-level regression, standard errors are clustered at the flag level. Panel C reports sample averages of

freight rates (or fixtures).

Panel A: Tanker sample

No. unique tankers 5,363
Sanction risk
Tanker type Low Moderate High Total
Medium 1,579 423 306 2,308
Panamax 297 88 55 440
Aframax 533 295 280 1,108
Suezmax 309 179 167 655
VLCC 672 64 116 852
Total 3,390 1,049 924 5,363
Panel B: Tanker characteristics balance test
Treated Control .

(High/Mod.-risk) (Low-risk) Diff. -value
Identity Change 0.169 0.165 0.003 [0.12]
Risky Flag 0.276 0.264 0.012 [0.24]
Ship-to-ship Transfer
e anchor 10 km away from ports 2.652 2.733 -0.082 [-1.61]
e anchor 20 km away from ports 1.424 1.475 -0.051 [-0.67]
e draft change 10 km away from ports 1.620 1.668 -0.048 [-1.63]
e draft change 20 km away from ports 1.297 1.334 -0.037 [-0.98]
Irregular Trajectory
o distance cutoff = 1 km 1.087 1.064 0.024 [0.40]
o distance cutoff = 2 km 1.426 1.414 0.012 [0.23]
o distance cutoff = 5 km 1.420 1.434 -0.014 [-0.27]
DBSCAN Outlier
e distance parameter = 10 km 3.744 3.670 0.075 [1.33]
o distance parameter = 20 km 3.023 2.946 0.077 [1.31]
Dark Activity
o at least 2-day dark period 0.883 0.872 0.010 [0.27]
e at least 3-day dark period 0.600 0.589 0.011 [0.31]

Panel C: Average fixture

Average fixture in July 2023 (one month before the event)

Full sample Low risk

Moderate risk

High risk

165.3 129.8

135.2

126.8
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D.2 Attention to Windward

Figure A-5 shows page views of the Windward.AI homepage. It increased dramatically right
after the list was put up on Reuters, suggesting that market participants likely paid attention

to this disclosure.
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Figure A-5: This figure plots the number of unique visitors of the domain https://windward.ai/
(and its sub-domains), from July 2023 to November 2023. The data is extracted from Semrush, a
competitive analysis platform operated by Semrush Holdings, Inc. The shadowed area represents
the estimation deviation (i.e., the error band provided by the platform). The vertical dashed line
indicates the event month of the Refinitiv disclosure of high/moderate-risk tankers.

D.3 Optimal mix of public-data-based detection models and Wind-

ward’s List

Figure A-6 compares the out-of-sample predictability of future sanctions achieved using
weighted averages of Windward’s and public-data-based predicted outcomes with various

weights.

E Estimating the effects of the Refinitiv disclosure

The key issue is that the untreated tankers, i.e., those classified as low-risk by Windward,
may not provide accurate counterfactuals for high /moderate-risk tankers. This is because the

low-risk tankers could be so different from the high/moderate-risk tankers that their fixtures
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Figure A-6: This figure compares the out-of-sample predictability of future sanctions achieved
using weighted averages of Windward’s and public-data-based predicted outcomes with various
weights. We plot the corresponding out-of-sample performance measures against the weight for
Windward’s list. Windward’s predicted outcome is a variable equal to one for high-risk tankers
and zero otherwise. For the public-data-based predicted outcome, we take the view of a third
party predicting future sanctioned tankers at the end of July 2023 (i.e., right before the Refinitiv
disclosure). For our training sample, the predictors are constructed from data from August 2022
till January 2023 and the dependent variable is a zero-one indicator of tankers sanctioned between
August 2022 and July 2023. The public data include AIS-based predictors and satellite-based
predictors. We take the average of the ML models (i.e., decision trees and neural networks). The
public-data-based predicted outcome is the estimated probability of a tanker being sanctioned after
July 2023. The out-of-sample evaluation does not include tankers that were already sanctioned at
the prediction time, i.e., the end of July 2023.

would have trended differently from those of the high/moderate-risk tankers even without
the disclosure. In that case, the conventional difference-in-differences (DiD) estimator would
be biased, because its key identification assumption — parallel trends for the treatment and
control — no longer holds.

We use two methods to address this issue. The first is propensity score matching (PSM),
introduced by Rosenbaum and Rubin (1983) to construct counterfactuals relying on the
strong ignorability assumption (“unconfoundedness”). PSM is an intuitive method and
makes it easy to visualize the data using standard DiD plots. Second, we follow Abadie (2005)
and employ a semiparametric DiD estimator. Abadie’s estimator only requires conditional
mean independence — that is, conditional on covariates, the expected value of the outcome
variable does not depend on treatment status.! Moreover, PSM requires estimating matching

weights as a function of propensity scores, choosing the functional form. In contrast, Abadie

1See, e.g., Heckman et al. (1997) and Abadie (2005).
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(2005)’s method offers lower degrees of researcher freedom regarding specification choice.

Consider the following setup to fix ideas in our context. Let ¢ = 0 (¢ = 1) denote
the pre-treatment period (post-treatment period), and X is a vector of tanker observed
characteristics. Let D = 1 (D = 0) indicate that the tanker is treated (untreated), i.e.,
it is classified as high/moderate risk (low-risk) in the Windward disclosure. Let Y; be the
tanker’s observed fixture at period ¢. Further, suppose Y, |D = 1 is the fixture for a treated
tanker at t = 1, and Y;'|D = 0 is its counterfactual fixture — i.e., what its fixture would
have been at ¢ = 1 had it not been treated. Similarly, Y\Y|D = 0 denote the fixture for an
untreated tanker at ¢t = 1, and YV|D = 1 denote its counterfactual fixture — i.e., what its
fixture would have been at t = 1 had it actually been treated. The quantity of interest is
the average treatment effect on the treated (ATT):

ATT =E Y —Y|D =1], (A-1)

which is the difference between the fixture for a disclosed-as-high/moderate-risk tanker and
what its fixture would have been, had it not been disclosed as high/moderate risk. When
there is a need to indicate a particular tanker, e.g., tanker i, we add a subscript ¢ to the
variables, e.g., X; and Y;,. In the cases without confusion, we drop the subscript of i for

simplicity.

E.1 Propensity score matching (PSM)

PSM addresses the challenge that the conventional DiD identification assumption
EY =Yo|D=1] = E[y{ - Y|D =0], (A-2)

may not hold when the differences between the characteristics of treated and control tankers,
i.e., between X|D = 1 and X|D = 0, affect the dynamics of outcome variables. For every
treated tanker ¢, PSM tries to find tanker(s) j which have very similar characteristics X;
to those of tanker i but were actually classified by Windward as low-risk; then it treats
such tanker(s) j as counterfactual. Rosenbaum and Rubin (1983) show that, under uncon-
foundedness (i.e., Y7, Y,V I D | X), it is sufficient to focus solely on tankers with similar
propensity p = Pr(D = 1]X) to have been labeled as high/moderate risk ex-ante. That is,
we can define ‘similar’ tankers relying only on dimensions of X that matter for risk labeling,
rather than considering matching on the full vector of characteristics X.

In our notation, PSM replaces [V — Y;o|D; = 1], i.e., the counterfactual fixture changes
of high/moderate-risk tanker ¢ in the absence of treatment, with }_, , _w(j,7)(Yj1 — Yjo),
i.e., the weighted average of observed fixture changes of low-risk tanker(s) j that had a similar

ex-ante propensity to be labeled as high/moderate risk. w(j, %) is determined by comparing
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p; and p; (Rosenbaum and Rubin, 1983). specifically, we give a higher weight for a low-risk
tanker j if p;, the conditional probability of being labeled as high/moderate risk based on
X, is closer to that of the target tanker i. Once the weights w(j, i) of matching tankers are

obtained, ATT can be estimated as follows:

. 1 o
ATT = Yo |V =Yio) = > @) (Yo~ Yio) | (A-3)

LiD;=1 j:D;=0
where V; is the total number of treated tankers and w(7,7) is the estimated value of w(j, ).
ATT averages the differences between the fixture changes around the disclosure event for

treated tankers and for the matched untreated tankers.

E.2 Abadie’s (2005) semiparametric difference-in-differences

Abadie (2005) relies on the following identification assumption:
EY/ -Y|X=2,D=1]=E[Y'-Y|X=2D=0]. (A-4)

This conditional identification assumption is more suitable to our setting because it is
more plausible that conditional on the same tanker size, AIS emission pattern, trajecto-
ries, ownership structure, etc., the fixture of a disclosed high/moderate-risk tanker in the
absence of disclosure would follow parallel dynamics with that of a low-risk tanker having
the same value of all these characteristics in X. To proceed, Abadie (2005) shows that
ATT defined in equation (A-1) can be written as an integral along all dimensions of X:

..|D=1]= [E[.|X =z,D=1]dP(X = z|D = 1). After substituting into the identi-

fication assumption in equation (A-4) and some algebraic manipulation, ATT equals to

— 1 . D_p. J— -
ATT = BT o). (A-5)

Pr(D =

where p = Pr(D = 1|X), as defined before, is the propensity score. To gain some intuition,

we can partition the expectation in equation (A-5) based on D = 0 and D = 1, which gives

MT:EM—KW:H—Ehyﬂ%?@é&zny@}JwD:ﬂ. (A-6)

In equation (A-6), the first term is the average of changes of observed fixtures for risky
tankers, and the second term is a propensity-score-based-weighted average of changes of
observed fixtures for low-risk tankers. Under the perfect randomized treatment assignment,
p=Pr(D =1|X) = Pr(D = 1) and the propensity-score-based weight is always one, which
returns back to the conventional DiD estimator. When p differs from Pr(D = 1), the method
will give higher (lower) weights to the low-risk tankers with higher (lower) p, i.e., those who

are closer (not close) to the high/moderate-risk tankers in terms of propensity scores.
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E.3 How are fixtures measured?

In shipping contracts, spot fixture rates are often quoted relative to “Worldscale” (WS),
i.e., a baseline rate calculated for a standardized vessel on a round-trip voyage between two
specified ports (or between ports in two specified areas). Such baseline rates are defined as
“WS100” and an actual quote can be given relative to the baseline — for example, “WS75”
or “WS200” would denote 75% of the baseline rate or double this rate for a charter between
the baseline ports. WS rates are revised annually based on updated bunker prices, port
costs, and exchange rates.? The key advantage of the Worldscale is that it makes freight
rates across different contracts more comparable. About two thirds of the contracts in our

sample are in WS format, and we focus our analysis on WS rates.

E.4 Robustness checks

We consider the following robustness checks on our fixture changes estimation. First, we
use propensity scores from a logistic regression, rather than the baseline machine learning
models. Second, we drop the fixtures in August 2023 to allow about two weeks for the
disclosure effect to come into force. Third, we drop the fixtures with Russian ports, i.e.,
ports of Novorossiysk, St. Petersburg, Primorsk, Tuapse, and Taman in our data, to check
that our effects are not coming solely from Russia-related changes in maritime activity around
this time. Finally, we use bootstrap standard errors with 500 replications instead of clustered

standard errors. The results are shown in Table A-5.

E.5 Changes in charterers’ behavior

Did U.S. and U.S.-allied charterers start avoiding tankers classified as high or moderate
risk by Windward? We obtain charterers’ names from fixtures data and determine the
countries of their headquarters via LinkedIn or company websites. U.S.-allied charterers
include companies from the UK, European Union, Australia, New Zealand, or Japan. The
dependent variable is the number of tankers of a given risk type that each charterer employs

each month. The regression specification is
#Htankersp; = [BU x US_charterer;, + 8% x US,allied,chartererh] X L0y
+tap + Y+ €ng, (A-7)

where h denotes a charterer.
Table A-6 presents the estimation results for Eq.(A-7). Similar to our previous results,

we find a significant drop in high-risk tankers usage by U.S. charterers, while effects for U.S.-

2See https://www.worldscale.co.uk/ for further details.
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Table A-5: Robustness checks

This table reports on robustness checks for the fixture changes estimation. The sample and construction of
propensity score are the same as in Table 3, except for the features indicated in the first row of the table.
In Panel A, PSM uses a Gaussian kernel with a bandwidth of 0.01. Standard errors are double-clustered at
the tanker and timextanker-type levels (except for the last column). In Panel B, we manually subtract the
cross-sectional mean by tanker type to account for timextanker-type fixed effects, since Abadie’s estimator
is derived without directly accounting for macro trends through time fixed effects. Standard errors are as
derived in Abadie (2005) (except for the last column). *  ** *** denote significance at the 10%, 5%, and
1% level, respectively.

Drop Russian Bootstrap s.e.
ports (500 replications)

Propensity score

from logistic reg. Drop Aug 2023

Panel A: PSM-DiD

Dependent Variable: Fixtures

ATT for High Risk -10.516* -15.675%* -10.999** -16.063***
[-1.70] [-2.51] [-2.08] [-3.54]
Obs. (tanker-month) 5,383 4,957 5,200 5,378
Time x Tanker Type FE Yes Yes Yes Yes
Tanker FE Yes Yes Yes Yes

Panel B: Abadie (2005) Semiparametric DiD

Dependent Variable: Fixtures demeaned by time x tanker type

ATT for High Risk ~12.280%** ~14.854%** -9.945%* -13.749%+*
[-2.87] [-3.29] [-2.26] [-3.20]
Obs. (tanker) 1,089 976 1,037 1,036

allied charterers are not statistically significant. For perspective, the average U.S. charterer
employed 0.652 high-risk tankers in July 2023, and the estimated 0.358 drop represents a
54.9% reduction (0.358/0.652).

E.6 Selection into dataset

One question related to our estimated treatment effects could be whether there are potential
selection issues: the information shock may affect the high /moderate-risk tankers’ incentive
to report their fixture contracts to the data vendor, from which we source our numbers.
For example, if after the information becomes public, some high/moderate-risk tankers are
reluctant to disclose their contracts, there could be a concern that our estimation is biased
by the selection issues. We test this hypothesis by using as our dependent variable the count
of the number of fixture contracts per month for each tanker, using the same specification
as our fixture results. To enter into the sample, we require a tanker to report at least one
fixture record during our sample period.

If there are selection issues, we will observe that the number of fixture contracts for
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Table A-6: Difference-in-differences analysis of changes of charterers

In this table, we examine whether U.S. or U.S.-allied companies tend to stop chartering high/moderate-
risk tankers after the Refinitiv disclosure. U.S.-allied companies are those from the UK, European Union,
Australia, New Zealand, or Japan. The dependent variable is the number of tankers of a given risk type
that each charterer employs in a month. The sample period is from Feb 2023 to Mar 2024. The post-period
starts from Aug 2023. We regress the dependent variable on the indicators of U.S. and U.S.-allied charterers
interacted with the post-period indicator controlling for charterer fixed effects and time fixed effects. The
coeflicients of the DiD estimation are reported. The standard errors are double clustered at the charterer
and time level. *, ¥* *** denote significance at the 10%, 5%, and 1% level, respectively.

Dependent Variable: No. tankers for each charterer-month

No. high-risk tankers =~ No. mod.-risk tankers = No. low-risk tankers

U.S. charterer x I;>0y -0.358* -0.131 0.065

[-1.91] [-0.67] [0.09]
U.S.-allied charterer x I;>qy 0.013 -0.030 0.136

[0.08] [-0.12] [0.31]
Obs. (charterer-month) 1,820 1,820 1,820
Time FE Yes Yes Yes
Charterer FE Yes Yes Yes

high/moderate-risk tankers significantly decreases if they want to avoid disclosing, after
Windward publishes their list. The results in Table A-7 show that all coefficients are both
statistically and economically insignificant for either of our two methods.

This suggests that the owners of high /moderate-risk tankers do not seem to change their
reporting of fixture contracts to the dataset, so such selection issues do not seem to be

important.

20



Table A-7: Difference-in-differences analysis of sample selection

This table examines whether there are potential selection issues by estimating the average treatment effects
on the treated (ATT) on the number of fixture records for high/moderate-risk tankers after the Refinitiv
disclosure using PSM-DiD and Abadie (2005)’s semiparametric DiD. The dependent variable is the number
of fixture records for each tanker-month, and it is set to zero if there are no fixture records. We exclude the
tankers with all zero values of the dependent variable. The sample period is from Feb 2023 to Mar 2024. The
post-period starts from Aug 2023. The propensity score is calculated by regressing the high/moderate-risk
tanker indicator on pre-period tanker characteristics using ML methods. The variables used to construct the
propensity score are shown in Table A-1. In Panel A, we match tankers within each tanker type and calculate
weights based on propensity scores and a Gaussian kernel with a bandwidth of 0.01, 0.03, or 0.05. Then, we
do DiD estimation in the matched sample, controlling for tanker fixed effects and timextanker-type fixed
effects. The standard errors in Panel A are double clustered at the tanker and timextanker-type levels. In
Panel B, we implement Abadie’s method. The standard errors in Panel B are as derived in Abadie (2005).
* Rk R denote significance at the 10%, 5%, and 1% level, respectively.

Panel A: PSM-DiD

Dependent variable: No. fixture records in each month

Bandwidth = 0.01 Bandwidth = 0.03 Bandwidth = 0.05

ATT for High Risk 0.020 0.013 0.011
[0.68] [0.48] [0.43]
Obs. (tanker-month) 37,338 37,338 37,338
ATT for Moderate Risk 0.009 0.002 0.002
[0.45] [0.11] [0.10]
Obs. (tanker-month) 41,776 41,776 41,776
Time x Tanker Type FE Yes Yes Yes
Tanker FE Yes Yes Yes

Panel B: Abadie (2005) Semiparametric DiD

Raw no. records

No. records demeaned

No. records demeaned

by time by time x tanker type
ATT for High Risk 0.009 0.009 0.015
[0.45] [0.47] [0.78]
Obs. (tanker) 2,447 2,447 2,447
ATT for Moderate Risk -0.003 -0.003 0.000
[-0.18] [-0.19] [0.02]
Obs. (tanker) 2,984 2,984 2,984

F Details related to the model

F.1 Signals, risk labels, and rational expectations

A key component of our model is that tankers and Clean exporters form rational expectations

of the authority’s signal from risk labels. We calculate the learning process (i.e., Ela|G, L],
Ela|G, H], E[a|B, L], and E[a|B, H]) using the following lemma.
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Lemma 1 Suppose X and Y are two jointly normal random variables with X ~ N(0,0%)
andY ~ N(0,0%), and their correlation is p. For a given threshold K, we have the following
conditional probability density functions (PDF):

fxy<x(z) =

K—pZXyg

o (Lot

( xz) (O’Y 1—p2)
eETp | — s

2mox

o p%fo
1 ( x? ) oyy/1-p?
exTp s

x) = —
fX|Y>K( ) \/%UX 20_3(
where ®(+) is the standard normal cumulative distribution function.

We assume the threshold K is set such that the number of High-risk tankers equals the
number of Bad tankers, A\. Let s¢ denote the Clean exporters’ optimally combined signal.
Then, E(s¢ > K) = \ implies

(1-»¢(£)+A¢(Kgl):1—x

where o, is the noise standard deviation in signal s°.

F.2 Solving the model
(1) Substituting wf and w% into Rogue exporters’ optimization problem gives

{Héa}é} Qi (P = pf — wara - ™) + Qi (F* — pé& — Wem - 27) +
vapB

Qi (F* — i — wpr1 - 27) + QFy (P — p§ — wpw - 27)
Substituting market-clearing conditions into FOCs w.r.t. p& and p&:
(1= 6c) (7" — pi — war1 - 2™ — car) + 0c(F* — p& — wam - 2™ — can) =0
(1= 0p)(F" = pf — wpp1 - 2" — cpr) + O0p(F" — pf — Wpm1 - 2™ — cpu) =0
(2) Substituting w¢ and w§ into Clean exporters’ optimization problem gives

max Qar(F — pr, — Waro - 2°) + Qan(F — puw — Wamo - 2) +
{rL.pu}

QpL(F—pr — WpLo - 2°) + Qpu(F — pu — Wpno - 2°)
Substituting market-clearing conditions into FOCs w.r.t. p; and py and using the facts
—A(i:iB) = 0 and —(171‘)05’ =1-—0p:
(1= 6c)(F — pr — Waro - 2 + car, — €) + 0a(F — pr, — Wpro - 2 + cp, — €) =0

(1= 0p)(F — pr — Waro - 2° + cau — ) + Op(F — pir — Wpno - 2 + cpw — ¢) =0
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(3) Critical values for tanker decisions

oL = — (War1 — Waro)z — B(Va — Vp)
coH = —pu — (Wam — Wano)z — B(Va — Vi)
CBL = — (Wpr1 — WpBLo)?

CBH = — (WpH1 — WBHO)Z

(4) Tanker values

0.E [ cGH) + pi } +(1—0g)E |:(CGL) —i—pL} [Ocwemo + (1 — 0c)waro)z

= A—
Ve - (A-8)
QBE [( BH) +p :| (1 — 0 )E |: ) +pL:| [HBUJBHQ + (1 — QB)ZUBL()]Z
Vg = (A-9)
1-p
and tankers’ sanction penalty
z=pVp
(5) Market clearing conditions
B (g (S N
Q8 = (1-N1-b0) (%) Qo = (1=N(1—b0)(1- =)
R _ CGH N _ _ CeH
at — (1o () o 1 (1-22)
CBI CBL
B = A=) () Qou = AM1=05) (1= )
CBH CBH
Qfy = Mp ( z > Qpr = Mg <1 - ?>
(6) Clean exporters’ information acquisition
max (o, x;62) — Qoe) — x - PV, A-10
e Ao x;.00) = Qlog) = x (A-10)
with optimality conditions
0, if (o¢, 1) — (0, 0) < PV,
dll(o, o0
Oex) _0U%) )1 e 1) - (o, 0) > PV (A-11)

doe Ooe
Oor1, ifIl(o¢,1) —I(0¢,0) = PY.
There are 21 endogenous variables in the model: 4 prices (pr, pm, p%, p&), 4 critical values
(car, cam, L, cpn), 8 quantities (Qf, Qfy, QFr, QBr, Qar, Qan, Q@pr, Qpu), 2 tanker
values (Vi, Vi), 1 sanction penalty z, and 2 variables about information acquisition (o, x).
We solve the model in the following manner.
First, for a given set of (o¢, x), we solve the model by iterating on tanker values, Vi and

Vp. The steps are as follows:

e Step 1: Discretize €.
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e Step 2: Set initial values as VCSO) and V]éo).

e Step 3: Given VG(k) and Vék) from the k-th iteration, and for each discrete point of €,
solve for the remaining endogenous variables (including 4 prices, 4 critical values, 8

quantities, and 1 sanction penalty) in a linear system, as those equations are linear.

e Step 4: Calculate Vc(;kﬂ’raw) and VE(ekH’raW) by substituting the values of the endogenous

variables in Step 3 into Eq.(A-8) and (A-9). Update the tanker values:
Vék+1) _ ¢VG(k+1,raw) + (1 B ¢>VG(k)7 V];k+1) _ ¢Vék+1,raw) + (1 _ ¢)VB£]€),

where ¢ is the learning rate.

e Step 5: Repeat Step 3 and 4 until convergence. The stopping condition is given by
|VC(;k+1,raw) _ V(gk)l + |Vék+1,raw) B Vék’)| <,

where 7) is the tolerance.

We discretize € on a grid of 101 points. We set the learning rate ¢ to 0.5 and tolerance 7
to 1077, The convergence of the above value iteration is ensured by the contraction mapping
theorem. Our results are robust to different discretization parameters and learning rates.

Then, we deal with the Clean exporters’ information-acquisition decision, o¢ and x. In
the pre-period equilibrium, the price of Windward’s information, P", is determined such
that Clean exporters are indifferent between buying information (xy = 1) and not buying
it (x = 0). Empirically, few Clean exporters purchased Windward’s information in the
pre-period. Accordingly, we approximate the pre-period equilibrium by y = 0. In the post-
period, public disclosure sets P" = 0 and induces y = 1. Given the choice of y, we solve

the optimal choice of o¢ by maximizing the Clean exporter’s objective in Eq.(A-10).

F.3 Details about calibrating 7,

The system to solve is given by

N
MY = >0+ €v. (A-14)
i=1
We conjecture the following linear solution:
N MW
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where A and B are parameters to solve. Substituting Eq.(A-15) into Eq.(A-14) gives

MW A B eV
N TR (0Tt gy (A-16)
where 7 = + N mi. Define
5 " A
X=0+7— S 1
(6417 = ps) + 7 (A-17)

Note that X is a sufficient statistic of M"W. Therefore, we have E[§|x;, MV] = E[§|z;, X].
Applying the projection theorem for normal random variables gives

Var(z;)  Cov(z;, X) ]_1 [ T; — ls ]

y; = Mé—{—[COV(ZEi,é) COV(X’(;)} Cov(xi,X) Var(X) X

— st | S5 % ]
P e Z+E"+A2N2 X

SeSs(zs — ps) + 52, 55 X

Sy —1
254-2,7 E5+ ] [J}i—,u(g]

= s+ o . — (A-18)
(X5 +2) (Ea t3+ A2N2> - <26 + W")
On the other hand, combining Eq.(A-15) and Eq.(A-17) gives
< AB
i = s + Az — pis) + EX' (A-19)
Comparing coefficients in Eq.(A-18) and Eq.(A-19) yields
by 2
IIN-D(N+2)Aa2+A-1=0, (A-20)
Ee 25
B__ N(N — 1)&/12. (A-21)
1-B D¢

Finally, we prove that when ¥5/%, — ¢ > 0 and X./%, — 0, we have A — 0 and B — 1.
Note that Eq.(A-20) implies that

Ee % 1.1
0<A< (E_) (N—-1)"3N"s. (A-22)
"
Therefore, when /%, — 0, we have A — 0. Note that Eq.(A-20) and Eq.(A-21) imply
B Y At -1
— — =N(N-1)ZA2= " A-23
1 _ B ( )26 1 + 1 E”] ( )
Therefore, when A — 0 and 1+ 12” — 1+ 5, we have £z — co and B — 1.

F.4 Upper bound of the valuation of Windward’s signal

Let Mgignar and Mo, denote the market values of Windward’s signal and its other busi-

nesses, respectively. Let superscripts 0 and 1 refer to the pre- and post-periods, respectively.
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Thus, M, Ognal is the pre-period value of Windward’s signal. The data imply

S

MD’gnal + Mother = $42m

S O

Also, Windward’s market value increases in the post-period

1 1 0 0
Ms'gnal + M, ther > M, ignal + M ther:*

7, O — S O

Public disclosure eliminates the proprietary value of the signal

Ml

signal

=0.

Assume the post-period spillover to other businesses (i.e., the market updates Mgignal to

ML gnal @150 based on the signal precision) is bounded by b:
Molther <b
Mgther B
Therefore, we have
MO MO
MO. — 1— other x$42m < | 1 — other x $42
signal ( Mgignal + MBther) e Mslignal + Molther $ "
M? 1
= (1—%) x $42m < (1——) x $42m
Mother b

If b is tied to the change in signal precision—from 7.5% pre to 21.3% post—then b = 2.84,
yielding

F.5 Model analogs

e First, the number of sanctioned tankers in the model is
Qsanc = Z (Qijwijo + Qfiwijn) - (A-24)
ije{GL,GH,BL,BH}
Since we normalize the total number of tankers to one, QQsune is also the proportion of

sanctioned tankers.

e Second, the volatilities of low-risk and high-risk tankers’ fixtures are std(pr) and std(pgy),

respectively.

e Third, we derive the model-implied pseudo-R? for predicting to-be-sanctioned tankers.
Generally, let y = 0, 1 denote the true label and 9 = 0, 1 denote the prediction. Pseudo-R?
is a function of three elements: proportion of sanctioned tankers p = E[y]; false positive

rate a = E[g|y = 0]; and true positive rate § = E[g|y = 1]. Define p = E[y|g|, which gives
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po=Elylg =0] = (1_13)(’15(_1;)@13(1_5) and p; = E[y|lg = 1] = (l_g—iﬂw. Pseudo-R? equals

pseudo- R? (A-25)

Efylog(p) + (1 — y)log(1 — p)]

Elylog(p) + (1 — y)log(1 — p)]

51— B)log(ps) + plog(1) + (1 — p)(1 — alog(1 — o) + (1 — Palog(l — py)
Plog(p) + (1 - Ploa(l — 7)

When y = 1 (y = 0) indicates a tanker being sanctioned (not being sanctioned), and

- 1—

g = 1 (g = 0) indicates a tanker labeled as high-risk (low-risk), we have the following

classification:

Low-risk (g = 0) High-risk (g =1)
Non-sanctioned (y = 0) (1—wpr) -BL+(1—wgr)-GL | (1—wpy)-BH+(1—wgy)-GH
Sanctioned (y = 1) wgy, - BL 4+ wqr, - GL wgey - BH + wgy - GH

GL, GH, BL, and BH are proportions of tankers in each category; wegr, Wey, War, and
wpy are equilibrium sanctioned probabilities conditional on each category. In equilibrium,
we have
c
Wy = Weyo + %(wmy1 — Wyyo), xy € {GL,GH,BL,BH}
where W,y and 1, are defined in the paper, and = captures the probabilities of dealing

with Rogue exporters in the current period. Therefore, based on the table, we have
p =wpr - BL+ wgp - GL + wpy - BH + wgy - GH,
(1 —wpy)-BH+ (1 —wen) - GH
(1 —wpr) -BL+ (1 —wgr) - GL+ (1 —wpy) - BH+ (1 — wgw) - GH’
Wwpy - BH + waey - GH
f= g1 - BL 4+ wer, - GL + wppy - BH + wep - GH

o =

Substituting them into Eq.(A-25) gives the pseudo-R? for predicting to-be-sanctioned

tankers.

Then, the model analog for the disclosure effect on high-risk tankers’ fixtures is
E[ ost ppre‘Hpost]
E [ppre | Hpost] )

where p is fixture and H?*** denotes a tanker that is labeled as high-risk in the post-period.

(A-26)

The average pre-period fixture, conditional on a post-period high-risk label is
E[pPe|HP*"] = P[LP™[HP*'] x E[p}] + P[HP™|HP**"] x E[p};°], (A-27)

where E[p}¢] and E[p};] are price averages taken over the pre-period aggregate shock
¢ and P[|.] is conditional probability. Noting that P[LP"¢|HP**'] = 1 — P[HP"¢|H**!], we
calculate P[HP"*|HP**"] by splitting it into three cases based on tanker types: (i) G and
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GPo! | (ii) GP™* and BP°**, and (iii) B”"® and BP*'. This is detailed below.

We use subscripts 0 and 1 to denote the pre- and post-period, respectively. For example,
Hj denotes the event of a tanker being labeled as high-risk in the pre-period. Using the

chain rule of conditional probabilities, we have
P[Hy|H,] = P
= ]PH |GD,G1,H1 X

PH |G07Blu 1

We calculate each term as follows. First, as per Section 6.1.1 in the paper, we have
P[G1|H1] = 1 — 0p1 and P[B|H;] = 0p1. Second, because in the model risk labels are
generated based on current tanker types only (i.e., the classification technology has i.i.d.
errors), the post-period tanker type is a sufficient statistic for the pre-period tanker type.
That is:

P[Go|G1, Hi] = P[Go|G1],  P[By|G1, Hi] = P[Bo|G4],

P[Go|B1, Hi] = P|Go|B1],  P[By|B1, Hi]| = P[By|B].
Because the change of a G tanker to a B tanker is irreversible, we have P[G|G;] = 1 and
P[By|G;] = 0. Since B tankers come from (i) By tankers that have not been sanctioned

or (ii) Gy tankers that have dealt with Rogue exporters in period 0 and have not been

sanctioned, we have
QLo+ Qpro + QgL,O + QgH,o
QBL,O + QBH,O + QgL,O + C~2]‘51&1,0 + QgL,o + QEH,O’
QgL,O + @gH,O
QBL,O + C~23H,0 + QgL,O + Qg[{,o + QgL,O + QgH,O’
where Qpr.o, Qpro, ng, @gH,O, ng, ng are the number of tankers for each type

surviving sanction in pre-period:

P[By|B] =

PlGo|Bi] =

Qpro= Qpro(l —wro), Qo= Qpmo(l — wiyp),
QgL,O = QgL,O(l —WLo — 5L,0)7 QgH,O = le{,o(l — WH,o — 5H,0)7
QgL,O = QgL,o(l - 5L,0)> QgH,O = QgH,o(l - 5H,0)-
Finally, again because risk labels only depend on current tanker types, we have
P[Ho|Go, Gy, Hi] = P[Ho|Go] = b0,  P[Ho|Bo, G1, Hi| = P[Hy|By] = 0p,
P[Hy|Gy, By, Hi] = P[Hy|Go| = 0c0, P[Ho|Bo, B, Hi] = P[Hy|Bo] = 0p,.
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Combining the above equations yields
]P)[H()‘Hl] - 9@70(1 - 934) +
Qb0+ Qb
Oc00B1 | = = — — — — +
Rpro+ Qro+ Qpro+ Opuo+ Qbro + Qdmo
O 00t Qpro+ QHo + QgL,O + QgH,O
" \@Bro+ QpHo + QgL,O + QgH,O + QgL,O + QgH,O

e Finally, we use the probability of sending AIS signals from areas near sanctioned countries
as a proxy for the probability of dealing with Rogue exporters in the model. Defining the

probabilities for H and L tankers of dealing with Rogue exporters as:

bH:PBMDd%ﬁuEﬂ+M®mxP@<wmﬂ:%%?+Ufﬁwgg

. _ c ¢
by, = P[B|L] x P[¢; < cpr] + P[G|L] x P& < cgr] = 90% +(1- GG)%,
the disclosure’s effect on high-risk tankers’ routes in the model is
E[bpost _ bpre’Hpost]

A-28
E[prre| 7o) (A-28)

where

E[bP"[HP*] = PIL[HP] x B[by] + PH[HP] < E[b]. (A-29)

E[0}¢] and E[b%°] are the averages of the respective probabilities taken over the pre-period

aggregate shock € and the conditional probability P[HP"¢|H?°*] is as specified above.

F.6 Model-implied benefits for exporters

Table A-8 shows the model-implied benefits from the disclosure for the top 20 exporters.

The gain for each one is greater than the Windward’s stock market valuation, $42 mln.
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Table A-8: Model-implied benefits for top 20 exporters

This table shows the model-implied benefits from the disclosure for the top 20 exporters. We calculate the
market share using the number of tanker-trips for each exporter divided by the total number of tanker-trips
during one year before disclosure, i.e., August 2022 - July 2023. The dollar benefit equals the model-implied
total benefit, $4,299 mln, multiplied by the market share.

Rank Exporter Share ]i’; HIE?S Rank Exporter Share ?; nrflflis
1 BP 6.16% 264.8 11 LITASCO 2.46% 105.8
2 VITOL 4.78% 205.6 12 ST SHIPPING 2.42% 104.2
3 SHELL 4.73% 203.4 13 ARAMCO 2.42% 104.2
4 REPSOL 4.40% 189.2 14 PETROBRAS 2.42% 104.2
5 EXXON MOBIL  3.92% 168.3 15 TOTAL 2.33% 100.3
6 UNIPEC 3.34% 143.6 16 ENI 2.19% 94.3
7 CSSSA 2.87% 123.4 17 CSSA 1.75% 75.1
8 TRAFIGURA 2.69% 115.7 18 AMPOL 1.66% 71.3
9 CNR 2.69% 115.7 19 ADMIC 1.62% 69.6
10 CHEVRON 2.47% 106.4 20 CEPSA 1.59% 68.5
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