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Abstract

Why do sanctions violations remain pervasive, even as authorities now enlist third-
party market intermediaries to exclude violators from global finance and trade? We
show that the primary reason is not weak compliance incentives — as commonly as-
sumed in policy debates — but rather the difficulty these third parties face in identifying
violators. Our analysis exploits the sudden disclosure of a list of suspected sanctions-
violating oil tankers on Refinitiv Eikon, the world’s second-most widely used business
data platform, by the maritime analytics firm Windward.ai. This disclosure increased
third-party detection accuracy (pseudo-R

2
) from 18% to 42%, resulting in a 13% de-

cline in earnings for suspect tankers, a 17% drop in their likelihood of approaching
sanctioned countries, and a 37% drop in their resale probability. A dynamic structural
model calibrated to these market impacts implies that the information shock redirected
$1.1 billion a year away from violators and reduced compliant exporters’ shipping costs
by 3.5%, but it also reduced compliant tankers’ earnings. The model further explains
why Windward – despite the sizable market impact of its list – was valued at only
$42 million just before the disclosure. Finally, counterfactual analysis confirms that
stronger penalties alone are ineffective without better information.
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In recent decades, sanctions enforcement has evolved beyond an exclusive reliance on

state-imposed penalties toward a more decentralized, market-based framework. In this sys-

tem, sanctioning authorities require third-party intermediaries — such as banks, insurers,

shipping companies, and other service providers — to conduct due diligence, monitor coun-

terparties, and terminate relationships with entities that facilitate violations (see, e.g., Huf-

bauer and Jung, 2020; Norrlöf, 2021; Van Genugten, 2021). The scope of sanctions has thus

been broadened by enlisting non-state actors to restrict violators’ access to critical financial

and logistical infrastructure — such as the SWIFT payment network or the U.S. dollar-based

financial system. Yet enforcement outcomes remain uneven, with continued and widespread

violations revealing significant challenges (see, e.g., Fisman et al. (2024); ESRC’s Economic

Observatory , or, The New Yorker).

In this paper, we study whether these enforcement challenges arise primarily from in-

formation constraints – i.e., because third parties have difficulty identifying violators —

or from limited compliance incentives — i.e., they can identify violators but nonetheless

continue dealing with them.

Sanctioning authorities like the U.S. Office of Foreign Assets Control (OFAC) have typ-

ically focused on strengthening incentives, by imposing steep penalties for non-compliance

(e.g., BNP Paribas paid a $8.97 bln fine in 2014), extending statutes of limitations from

five to ten years (OFAC, July 2024), and clarifying that sanctions operate on a strict liabil-

ity basis, meaning enforcement of penalties does not require proof of intent (OFAC, March

2024).
1

However, sanctioning authorities provide only limited support in identifying violators, ef-

fectively shifting the burden of detection onto market participants. Consider the oil shipping

sector, which plays a central role in global trade (Brancaccio, Kalouptsidi and Papageorgiou,

2020, 2023; Ready, 2018) and serves as the primary conduit for vital oil export revenues of

sanctioned states such as Russia and Iran (Brown, 2020). In this sector, U.S. sanctioning

authorities added approximately 100 tankers to publicly available sanctioned entity lists be-

tween 2021 and 2024. Over the same period, however, the Congressional Research Service

estimated that more than 1,600 vessels transported sanctioned oil, implying that identifica-

tion of the remaining 1,500 tankers was left to third parties.

At the same time, market participants across sectors increasingly underscore the difficulty

of detecting sanctions violators. In finance, for instance, a review of 10-K filings by the 50

largest U.S. institutions shows that 97% explicitly cite the challenge of identifying violators

as a significant compliance risk (Figure 1).

1
This focus on incentives is not unique to the U.S.: other sanctioning authorities such as the EU and the

UK have adopted comparable enforcement principles; see, e.g., FCA, 2024).
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Figure 1: This figure shows the results from a large-language-model-based (OpenAI’s ChatGPT-4) analysis
of 10-K reports of the largest (by total assets) U.S. financial firms between 2015 and 2023. We first ask
GPT-4 to identify the reports that mention sanctions enforced by OFAC, or sanctions-related risk, cost, or
uncertainty. Then, we ask it to identify the reasons why the firms think sanctions compliance is challenging
(further details are in Internet Appendix A). The left plot shows the percentage of firms among the 20,
30, and 50 largest financial firms, respectively, that mention economic sanctions-related risk (or cost or
uncertainty) in their 10-K reports over the 2015-2023 period. The right plot shows the top eight challenges
in sanctions compliance for the 50 largest financial firms.

Similar detection challenges have also been flagged by leading intermediaries in the lo-

gistics sector. For example, Daniel Tadros, Chief Operating Officer of the American Club —

a leading U.S.-based P&I insurer — was quoted by the New York Times: “It’s impossible

for us to know on a daily basis exactly what every ship is doing, where it’s going, what it’s

carrying, or who its owners are.”

To assess whether information or incentives are the binding constraint on sanctions en-

forcement, we first assess the credibility of market participants’ detection concerns. The

ideal design would be a sudden public release of a comprehensive violator list, enabling com-

parison of market reactions for listed entities against a matched set of compliant tankers.

We approximate this setting using a quasi-natural experiment: the unexpected disclosure in

August 2023, on the widely used Refinitiv Eikon platform (LSEG, 2023), of a list of suspect

tankers compiled by Windward, an AI-based maritime anomaly-detection firm. Following

the disclosure, Windward’s suspect-tanker module was made publicly available —- free for

six weeks and then via a nominal £270/month subscription.

If market participants already had sufficient incentives to avoid violators but were con-

strained by inadequate information, then by relaxing this constraint the Refinitiv disclosure

would have triggered sizable market-driven penalties for sanctions violators. To formally test

this hypothesis, we estimate the information elasticity of enforcement: the extent to which

improvement in detection accuracy reduces profits for violators.

2

https://www.nytimes.com/interactive/2024/02/16/world/middleeast/iran-oil-tankers-sanctions.html


The first step in estimating this elasticity is to quantify the improvement in detection

accuracy following the disclosure. This, however, poses a challenge – the accuracy of interest

concerns the probability with which an average sanctions-violating tanker can be identified,

whereas we, as econometricians, do not observe the set of true violators. We address this

challenge using two complementary strategies. First, we compute the out-of-sample pseudo-

R
2
with which a third-party could have predicted which tankers would be sanctioned over

the subsequent months (until the end of our sample); this enables us, via a structural model,

to calibrate the object of interest – the detection accuracy across the broader population of

violators. To calculate this out-of-sample pseudo-R
2
, we train machine learning models using

publicly available ship-tracking signals and satellite data, adhering to industry best practices.

In the pre-disclosure period, these models achieve a pseudo-R
2
of just 4.4%; but after the

disclosure, when we include Windward’s proprietary list as an additional input, the pseudo-

R
2
rises to 15.4%. Second, to further validate the informational value of the disclosure, we

leverage a unique dataset from an anonymous port agent operating in a Persian Gulf country.

This dataset identifies 33 foreign-flagged (non-Iranian) oil tankers that were seen violating

Iranian sanctions in January 2021.
2

Of these, 27 were flagged as risky by Windward. By

contrast, our machine learning models based solely on public data correctly identified at most

17 of these tankers, while a different but also well-known public list — from the advocacy

group United Against Nuclear Iran (UANI) — included only 10.

The second step in estimating the information elasticity of enforcement is to quantify

the disclosure’s impact on violators’ profits. We do so using an event-study framework

complemented by structural modeling. For the event study, we implement both a Propen-

sity Score Matched Difference-in-Differences (PSM-DiD) estimator and the semi-parametric

Difference-in-Differences approach of Abadie (2005). We compare three key market outcomes

for tankers flagged as high-risk by Windward with a matched set of low-risk tankers, before

and after the disclosure event. We find that, first, average earnings for high-risk tankers de-

clined by 13% following the disclosure, relative to their counterfactuals. Second, these vessels

became 17% less likely to approach sanctioned countries, implying that the perceived risk of

detection and enforcement began to outweigh the profit incentives for continued violations.

Third, transaction data from Drewry show that the probability of reselling a tanker flagged

as risky fell by 37% within a year of the disclosure — likely reflecting restrictions imposed

by sanctioning authorities that prohibit transfers of ownership of implicated vessels.

Taken together, these findings point to economically significant losses for suspected sanc-

tions violators following the Refinitiv disclosure. It is important to note, however, that this

2
While this dataset permits a direct measurement of detection accuracy, we refrain from using it as our

main estimate given its limited size and scope.
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evidence pertains to suspected violators – those flagged on the Refinitiv list, rather than

actual violators – those targeted by authorities, but whose identities are unobserved. To

address this limitation, we develop a dynamic structural model of the oil shipping sector

with endogenous compliance decisions. In this framework, key unobservables – such as the

accuracy of detecting actual violators, as well as freight rates and profit margins for both

sanctions-violating tankers and sanctioned exporters – are determined in equilibrium and

can be inferred by calibrating the model to market data and our reduced-form event-study

estimates.

Our results indicate that the disclosure increased the probability of correctly identifying

actual sanctions-violating tankers from 18% to 42%, triggering a sizable redistribution of

rents – about $1.1 billion annually away from violators and $1.9 billion annually toward

compliant actors. Sanctioned oil exporters faced a 1.2% increase in freight rates, and their

tanker usage declined by 7.7% after the disclosure, while exporters of non-sanctioned oil saw

their freight costs drop by 3.5%. Additionally, the continuation value of violating tankers

fell by 8.5%, i.e., $3.4 million each for tankers about 15-year-old, similar to those typically

used in sanctioned trades. Assuming that roughly 1,500 tankers were engaged in violations

but were not formally designated around the time of the Windward event, this translates to

a total decline in value exceeding $5.1 billion for these tankers.

In sum, improving detection accuracy imposes substantial losses on sanctions violators,

suggesting that better information meaningfully strengthens enforcement. However, our

analysis also uncovers a counterintuitive implication: not all compliant actors benefit. Model

calibration reveals that even fully compliant tankers – those with no history of transport-

ing sanctioned oil – suffered a decline in earnings following the Refinitiv disclosure, which

amounted to an aggregate annual loss of $2.4 billion. This occurs because sanctioned oil

exporters, facing heightened detection risk, avoid hiring tankers with prior violations. These

tankers shift to the compliant segment of the market, increasing competition and putting

downward pressure on freight rates. Part of this downward pressure is offset by sanctioned

oil exporters offering a premium to attract compliant tankers, but these added earnings are

insufficient to offset the broader decline of freight rates in the much larger compliant market.

We test this prediction in Section 3.5 using a shift-share design, and find supportive evidence

in the data.

Next we use the model to explore a complementary counterfactual. While the previous

analysis assessed improvements in information while holding incentives fixed, now we consider

the reverse: strengthened compliance incentives while keeping detection accuracy fixed at

pre-disclosure levels. This exercise allows us to test whether limited information was indeed

the binding constraint on enforcement. If so, tightening incentives – for example, by imposing

4



higher fines on exporters of non-sanctioned oil who hire sanctions-violating tankers – should

have limited impact in the absence of better detection. The results confirm this hypothesis:

with detection remaining as noisy as pre-disclosure, increasing penalties yields little change

in enforcement outcomes.

So far, our results show that limited information – rather than weak compliance incentives

– was the primary constraint on sanctions enforcement. In order to understand the policy

implications of these findings, however, it is important to recognize that this constraint did

not stem from a lack of available information: Windward had been selling the same list of

sanctions violators prior to its public disclosure, yet most market participants chose not to

purchase it. This implies that the market perceived the expected benefit of acquiring the

information to be lower than its cost – a fact that has to be accounted for when designing

policy.

The simplest explanation for this choice would be that market participants, e.g., exporters

of non-sanctioned oil, accurately anticipated the list’s value (which we estimate at $4.9 billion
for this group) but found its cost to be even higher. However, the data contradict this

interpretation. Windward’s total stock market valuation – reflecting the value of its sanctions

risk list, plus its other assets – was just $42 million prior to the disclosure, suggesting that

the cost of acquiring the information was two orders of magnitude smaller than its ex-post

benefit. In fact, based on our estimates of total gains and market shares, each one of the top

20 non-sanctioned oil exporters gained more than $42 million from the disclosure (Internet

Appendix Table A-8), implying that any of them could have acquired Windward outright,

released the list publicly, and still profited. It is therefore implausible that our findings

reflect a free-rider equilibrium – one where individual exporters lacked sufficient incentive to

act and collective action failed due to coordination frictions.

The data, instead, point to a different explanation: exporters of non-sanctioned oil un-

derestimated the accuracy of Windward’s list and, as a result, misperceived its value to be

low. If the market was stuck in an equilibrium where this misperception persisted—i.e.,

market forces alone could not correct it—then some form of policy intervention would be

warranted.

Such a persistently low valuation for Windward is exactly what we find in the data:

Windward’s stock price had dropped to half of its IPO value – and stayed at that level

or below for over a year – before it decided to disclose its sanctions list on Refinitiv. Our

model provides a micro-foundation for why this could happen. At its core is a self-fulfilling

feedback loop between beliefs about data accuracy and Windward’s market valuation. In

this loop, a potential buyer — uncertain about Windward’s accuracy, given that it was a

young startup in a novel domain (Cohen et al., 2013) — tries to infer what others believe,

5



using Windward’s valuation as a signal (e.g., Sun, 2017; Banerjee, 2011; Bond et al., 2012).

A low valuation signals low perceived accuracy, which reduces the buyer’s own willingness

to pay, thereby reinforcing the low valuation. In such an equilibrium, even a temporary

drop in valuation— driven, e.g., by uninformed trading (Edmans et al., 2012)—can lead to

persistent undervaluation and overly pessimistic beliefs about accuracy. Windward’s decision

to release its suspect tanker list at near-zero cost can be interpreted as an attempt to escape

this undervaluation trap by publicizing its true accuracy. We present three features of the

data consistent with this interpretation in Section 3.2.4.

Even so, one might still ask whether any policy response is necessary—after all, the infor-

mation constraint was eventually alleviated by the Refinitiv disclosure, without regulatory

intervention. However, if that disclosure occurred only as a last resort to escape persistent

undervaluation, it raises a deeper concern: would Windward—or any similar firm—have

invested in creating such a list if it had anticipated this outcome from the outset? More

broadly, the possibility that markets can persistently undervalue even reasonably accurate

sanctions-violator lists weakens incentives for private firms to produce them.

Market failure arising from persistent undervaluation of high-quality information implies

that authorities need to reconsider information policy as a tool to reduce the profitability

of sanctions evasion. Short of publicly funding the production and release of such data,

one option is to help private providers credibly signal information quality—for example,

through certification mechanisms. Another is to facilitate public access to high-quality data

via transfer schemes: for instance, a policymaker could purchase the information from a data

vendor at a price that sustains future production—even if that price exceeds what the market

would otherwise bear—and then recover the cost by charging a fee or tax to its beneficiaries.

Related Literature: Our paper contributes to several strands of literature. First, we relate

closely to work on sanctions violation and forensic detection. Prior research has developed

creative methods for uncovering violations using indirect signals—such as price gaps in oil

markets (Hsieh and Moretti, 2006), stock returns in response to arms embargoes (Dellavigna

and La Ferrara, 2010), and rerouted trade during geopolitical blockades (Fisman et al., 2024).

Unlike these studies, we examine how markets respond to improved detection, leveraging a

quasi-experimental disclosure and a structural model to trace effects on pricing, routing,

and asset values. In doing so, we contribute to a broader literature on forensic economics

and illegal activity detection (e.g., Dimmock and Gerken, 2012; Fisman and Wei, 2004,

2009; Griffin and Kruger, 2023; Griffin and Maturana, 2016; Griffin and Shams, 2018), while

emphasizing information frictions as a structural bottleneck to enforcement.

More broadly, we contribute to the literature on the economics of sanctions and embar-

goes (e.g., Baldwin, 2020; Cipriani et al., 2023; Crozet et al., 2021; Early and Preble, 2019;

6



Eaton and Engers, 1992, 1999; Efing et al., 2023; Huynh et al., 2023; Itskhoki and Mukhin,

2023). These papers typically focus on strategic interactions, incentive compatibility, or po-

litical economy considerations, and often assume that violations are observable or formally

designated. In contrast, we show that improved detection alone can meaningfully enhance

enforcement. More specifically, we relate to studies on the effects of recent sanctions on Iran

(Dizaji and van Bergeijk, 2013; Haidar, 2017) and Russia (Babina et al., 2023; Huynh et al.,

2023; Lastauskas et al., 2023), but differ in focusing on the provision of identifying infor-

mation about suspected violators, rather than the imposition of sanctions per se. Similarly,

while Bai et al. (2025) estimate the global macroeconomic effects of unauthorized shipments

sanctioned oil, we highlight the detection limits that allow such shipments to persist despite

regulatory efforts.

Finally, we contribute to a broader literature on information disclosure and market dis-

cipline (e.g., Goldstein and Yang, 2019; Liberti, Seru and Vig, 2016; Peress, 2014), which

examines how public and private signals affect contracting and resource allocation. We show

that public classification of suspected violators in enforcement-sensitive markets not only

shifts prices but also alters equilibrium dynamics — spillovers that our model formalizes and

quantifies.

Taken together, our paper offers the first unified empirical and structural analysis of

sanctions enforcement under imperfect detection. We move beyond traditional concerns of

incentive compatibility and strategic signaling to show that informational frictions alone can

significantly shape enforcement outcomes.

The rest of the paper is organized as follows: Section 1 provides a brief background,

Section 2 examines the Refinitiv disclosure, Section 3 presents a dynamic structural model

and estimates key quantities of interest within its scope, and Section 4 concludes.

1 Background

In this section, we first explain why it may be difficult to detect violating tankers – in spite

of their large, slow-moving nature, and in spite of modern advances in data and technology

to monitor vessels at sea. Then we describe the circumstances surrounding the key event

we study – the Refinitiv disclosure in August 2023 – that allows us to evaluate whether a

lack of information or incentives is acting as a binding constraint on improved sanctions

enforcement.
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1.1 Obfuscating Violations: The Case of Oil Transport

Before we focus on detecting sanctions-violating tankers, here we explain what makes de-

tection hard – i.e., how do violating tankers obfuscate their activities. Here we illustrate

typical strategies violators employ to evade detection through ship-tracking data from the

Automatic Identification System (AIS).
3

Authorities enforcing sanctions advise the shipping industry (OFAC, 2023) to monitor

suspicious AIS transmission gaps (“dark activity”), and geolocation “spoofing”, where AIS

data is falsified to display a ship in a false location, akin to using a VPN (Windward, 2020).

Such spoofing, reported by the UN in 2019 (U.N. Doc. S/2019/171), has rapidly proliferated

since 2021 (New York Times, Sep. 2022, Economist, Apr. 2022).

Figure 2 illustrates spoofing and dark activity for two tankers in our Iranian sanctions

violators dataset. In the top panel, the tanker’s AIS signals falsely indicated its presence in

the northern Persian Gulf while it was actually in Iran according to our ground truth data.

The tanker in the bottom panel ceased AIS transmissions for four days during which it was

also observed in Iran.

Regulators (OFAC, 2020), and industry experts (e.g., Wolsing et al. (2022)) suggest mul-

tiple categories of sanctions violation predictors to detect such activity: (i) tanker identity

change, (ii) using risky country flags, (iii) ship-to-ship transfers, (iv) irregular trajectories

(that are thought to indicate falsified routes), (v) anomalous locations (where tankers typi-

cally do not tread), and (vi) dark activity. In addition, more sophisticated players are also

advised to use satellite data for detection (OFAC, 2023, Economist, Apr. 2022), e.g., from

the Sentinel-1 mission. Figure A-1 in the Internet Appendix displays three of these images

as an example, with further accompanying details.

We show in the next Section that detection remains highly challenging, even if this advice

is followed diligently by compliant parties.

1.2 The Refinitiv disclosure

On 16 August 2023, the maritime AI firm Windward made its sanctions risk classifications

for oil tankers publicly accessible via the London Stock Exchange Group’s (LSEG) Refinitiv

Eikon. This data platform, originally started by Reuters, and Bloomberg are the two most

widely used business information platforms in the world – Bloomberg has a 33.4% market

share, while Refinitiv Eikon has 19.6% across 190 countries worldwide (Investopedia).

3
AIS was originally designed for collision avoidance. Vessels over 300 gross tonnage must carry AIS

equipment (IMO, 2000). This data has been utilized in academic research before (e.g., Brancaccio et al.
(2020)), is also used for sanctions compliance, (U.N. Doc. S/2019/171, Kilpatrick (2022)), and even flag
state registries have used it to de-flag ships (Lloyd’s List, Feb. 2020, Oct. 2020).
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https://ofac.treasury.gov/media/932391/download?inline
https://windward.ai/blog/going-dark-is-so-2019/
https://www.nytimes.com/2022/09/03/world/americas/ships-gps-international-law.html?smid=url-share
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Figure 2: In this figure, solid and dashed lines show the trajectories of two tankers in the Persian Gulf, as
given by their AIS signals. White arrows indicate the direction of movement. The top plot shows a case of
spoofing, i.e., a tanker which is placed at an Iranian port by our dataset of sanctions-violating tankers, but
at the same time emitting falsified AIS signals (red dashed lines) showing it traveling in the northern part
of the Gulf near Iraq. The yellow solid lines show this tanker’s path before and after its Iranian port visit.
The bottom plot shows a case of dark activity, i.e., the tanker stopped emitting signals while observed at an
Iranian port (per our dataset). Marker “A” indicates the last signal before it went dark, emitted at 02:16:12
on 2021-01-23. Marker “B” shows the first signal after its dark period, emitted at 04:54:45 on 2021-01-27
not too far from A and near the Iranian coast, concluding a four-day dark period.

The release therefore marked a notable shift in the accessibility of sanctions risk in-

formation. The list itself categorizes over 400,000 vessels into Low, Moderate, High, and

Sanctioned risk tiers, leveraging over 100 million daily data points, integrating proprietary

satellite imagery and weather data with information from its clients, which include the United

Nations, the European Border and Coast Guard Agency (Frontex), and U.S. agencies such

as the Drug Enforcement Administration and the Office of Naval Intelligence (Reuters, Mar.

2016, Wired, Mar. 2020). Observers have compared Windward’s technology to military-

grade signals intelligence adapted for commercial use (RAND, 2017). The Windward list

had previously only been bought by a limited set of clients. but by publishing the data on

9
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Refinitiv Eikon — where it was available for free for six weeks, followed by a subscription fee

of approximately £270/month — this disclosure effectively democratized access to advanced

maritime risk intelligence.

To understand what might have motivated Windward to disclose this data for free –

an issue which we study in detail later – we describe here what was happening with the

company around that time. Windward was the first pure-play maritime data company to

publicly list on an exchange, with a market capitalization of approximately £126.5 mln in

December 2021. But by the second week of August 2023, right before it disclosed the list on

Refinitiv, this value had steadily declined to only £35 mln (about $42 mln; see, e.g., Yahoo

Finance, 2023).

However, in spite of publicly releasing the sanctions suspect list initially for free, the

disclosure was followed by a 10% increase in Windward’s stock price over the next 3 trad-

ing days. This is likely because the disclosure drew attention to, and boosted confidence

in Windward’s capabilities in sanctions compliance AI and, broadly, in maritime AI. This

increased overall sales for Windward by demonstrating the company’s capabilities and help-

ing secure new contracts – following the announcement, Windward shifted its focus toward

offering tailored solutions for both commercial and government clients (Proactive, 2023).

The stock gained further momentum in the months following; by March 2024, Windward’s

market cap had increased to around £179 mln. Finally, in December 2024, Windward an-

nounced it would go private after agreeing to a takeover bid by U.S.-based growth equity

firm FTV Capital. The acquisition valued Windward at £216 mln.

2 Information shocks and market-based enforcement

2.1 The disclosure’s effect on the difficulty of detecting violators

We first assess whether Windward’s list helps third parties predict which tankers are about

to be sanctioned in the near future. Such predictive ability is crucial for third parties’ risk

management; e.g., if a bank ended up unknowingly lending to such a tanker, the loan amount

might be at risk if the tanker got sanctioned.

To do so, we first take the view of a third-party that uses AIS-signal-based ship-tracking

data, as well as satellite imagery, as recommended by authorities in Section 1. We assume

that these third parties use these data to estimate Machine Learning (ML) models, which

allow for the most flexibility (e.g., various non-linear combinations of the above predictors),

and are designed for such prediction exercises. Specifically, we employ decision trees and

neural networks. We use 10-fold cross-validation to fine-tune model parameters; the sample
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is randomly divided into 10 sub-samples, models are trained with nine sub-samples, leaving

one for validation. This procedure is repeated 10 times to select the best hyper-parameter

combination based on McFadden’s pseudo-R
2
. Detection performance is evaluated from the

best cross-validated model using its pseudo-R
2
.

Our goal here is to predict which tankers will be sanctioned between August 2023 and May

2024 (the end of our sample), using data up to July 2023. First, we train ML models based

on the sample from August 2022 to July 2023 using tankers sanctioned during the training

period as our targets (i.e., we exclude tankers sanctioned before August 2022). Then, for

out-of-sample prediction, we focus on the tankers that have not yet been sanctioned until

July 2023, and average model predictions from a decision tree and a neural network. The

predictors, including both AIS-based and satellite-based indicators, are described in Internet

Appendix B.

To compare Windward’s predictive ability, a simple metric is to rank tankers by our

model-predicted probabilities and select the top 25% – the same proportion as Windward,

and then compare the number of tankers correctly predicted to be subsequently sanctioned.

Among 69 tankers that are sanctioned post-July 2023, our list of the top-25% only contains

27, while Windward’s list contains 65, demonstrating its substantially superior accuracy.

More formally, as we show in Panel A of Table 1, the pseudo-R
2
with which to-be-sanctioned

tankers can be predicted by ML models using public data alone (i.e., AIS+satellite) is 4.4%.

In contrast, optimally combining Windward with the public data (0.55 × public data +

0.45 × zero-one dummy of Windward’s risk label) raises pseudo-R
2
to 15.4%.

4
Panel B of

the Table shows the importance of individual predictor variables in terms of the drop in

pseudo-R
2
when each is left out – and again reveals that Windward’s list is by far the most

important of these.

Next, we benchmark Windward’s relative accuracy against AIS-based alternatives using

a “ground truth” dataset on sanctions-violating oil tankers in Iran. This unique dataset lists

all non-Iranian-flagged tankers seen in Iran’s Persian Gulf waters in January 2021 (total of 33

tankers), and is collected by an anonymous source in the Middle-Eastern shipping industry

via text messages from port agents, brokers, and charterers. While the provenance and scale

of the dataset limit its usefulness, it offers a rare opportunity to test detection models against

a set of confirmed breaches – something missing in the literature (Wolsing et al. (2022)).
5

Internet Appendix Table A-2 Panel C shows that Windward classified 27 out of these 33

listed violators as high/moderate risk, whereas our models detected only 17 at best, even at

4
Figure A-6 in the Internet Appendix shows how different weights on these two approaches affect overall

pseudo-R
2
s, in particular that public data-based ML still has value even after the Refinitiv disclosure.

5
We intend to make this dataset publicly available to facilitate replication and further studies.
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Table 1: Out-of-sample predictability of future sanctioned tankers

This table reports the out-of-sample predictability of future sanctioned tankers based on public data (AIS
data and satellite images) or public data combined with Windward risk labels. The training sample spans
from August 2022 to July 2023, and the testing sample spans from August 2023 to May 2024 (end of our

sample). In panel A, we report the model performance measured by the out-of-sample pseudo-R
2
. For the

column “AIS + Satellite”, we average model predictions from a decision tree and a neural network. For the
column “AIS + Satellite + Windward”, we use the optimal linear combination between public signal and
Windward risk labels (a zero-one dummy). In panel B, we report the predictor importance measured by the

reduction of the out-of-sample pseudo-R
2
when setting the corresponding predictor(s) to zero.

Panel A: Model Performance

AIS + Satellite AIS + Satellite + Windward

pseudo-R
2

4.35% 15.38%

Panel B: Predictor Importance

Windward 11.03%
Satellite Detection 2.69% 1.05%
Identity Change 0.03% 0.00%
Risky Flag 0.57% 0.18%
Irregular Trajectory 0.66% 0.33%
Ship-to-ship Transfer 2.67% 1.06%
DBSCAN Outlier 1.20% 1.03%
Dark Activity 0.00% 0.87%

a 90% confidence level. While these results are not directly comparable – since Windward

may have flagged tankers based on activity beyond January 2021 – its significantly higher

detection rate is notable. Moreover, even UANI’s “The Ghost Armada” list – also based on

activity not restricted to January 2021 – recognized just 10 of the 33 violators at the time

of the Refinitiv disclosure, further underscoring Windward’s superior accuracy in detecting

sanctions violators.

Finally, we find that market participants were aware of, and attentive to, the disclosure:

Figure A-5 in the Internet Appendix shows how Windward’s homepage views saw a sharp

increase following the list’s release.

2.2 Real effects of the disclosure on suspect tankers

Here we examine the real effects of the Refinitiv disclosure on suspect ships, focusing on

(i) tanker fixtures (i.e., freight rates or rental rates negotiated between a shipowner and a

charterer), (ii) tanker route changes, and (iii) ownership transitions.

We start by estimating the effect of Windward’s high/moderate risk classification on

affected tankers’ fixtures in a matched-sample Differences-in-differences (DiD) framework.

Fixtures are measured in standardized Worldscale units, allowing for easy comparison across
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contracts (see Internet Appendix E.3 for details). We examine the change in fixtures around

the disclosure for tankers labeled as high/moderate risk, and compare them to counterfactual

tankers – otherwise identical ones, but labeled by Windward as low risk. The challenge lies

in constructing such counterfactuals, and we use two methods to do so.

First, we use propensity score matching (PSM), introduced by Rosenbaum and Rubin

(1983); this method looks to match a treated, i.e., a high/moderate risk tanker, to a low risk

one which had the same ex-ante propensity of being classified as high/moderate risk based

on public data. We present summary statistics and balance tests – which show that the

matched tankers are ex-ante very similar to the treated ones – in Internet Appendix Table

A-4. This method is intuitive, and allows for standard DiD plot visualization.

In this framework, treatment effects for high-risk tankers are estimated as follows:

fixturec,i,k,t = [
7

∑
l=−6

β
H
l × high riski × I{t=l}] + αi + γk,t + ϵc,i,k,t, (1)

where fixturec,i,k,t is the WS rate for contract c, tanker i (with tanker type k) in month t;

high riski equals one for tankers labeled as high-risk in Windward’s list, and zero otherwise;

αi is tanker fixed effects, and γk,t is time×tanker-type fixed effects. We are interested in the

average treatment effect on the treated (ATT) for high-risk tankers, given by the coefficient

series {βH
l }7l=−6. To keep interpretation simple, we first exclude tankers classified as moderate

risk from the sample.

Plot A in Figure 3 shows that the PSM-DiD estimated coefficients in the pre-period

{βH
l }−1l=−6 are insignificant, indicating a lack of pre-trends. Post-disclosure, fixture rates

for high-risk tankers drop immediately in August by about 20 WS units compared to the

matched control group, a change that persists until the end of our sample in March 2024. To

assess the impact on tanker earnings, consider that the average fixture for high-risk tankers

in July 2023 was 126.8 WS units (Internet Appendix Table A-4). A 20-unit drop in August

implies a 15.8% revenue decrease (20/126.8). Note that this decrease reflects the market

reaction to the Windward-induced change in the risk of tankers violating sanctions, not

actual violations.

Next, in Plot B of Figure 3 we examine the impact of the information shock on tanker

routes, i.e., the propensity of newly labeled high/moderate risk tankers to show up in Ira-

nian, Russian, or Venezuelan territorial seas (defined using data from the Flanders Marine

Institute). The dependent variable is a zero-one indicator of AIS signals emitted within the

territorial seas of these countries each month. Our test design mirrors the fixtures analy-

sis from the previous section. This plot shows estimated coefficients {βH
l }−1l=−6, which show

probabilities of passing near sanctioned countries. Pre-period coefficients show a lack of
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Figure 3: Plot A. shows the time series of coefficients (i.e., average treatment effects on the treated,
ATT) estimated with PSM-DiD to examine the change in fixtures for high-risk tankers from Feb 2023 to
Mar 2024 (end of our fixture data). 0 indicates the Refinitiv disclosure in Aug 2023. The propensity
score is calculated by regressing the high-risk tanker indicator on pre-period tanker characteristics using ML
methods: average outputs from a decision tree and neural networks, with variables described in the Internet
Appendix B. We match tankers within each tanker type and calculate weights based on propensity scores
and a Gaussian kernel with a bandwidth of 0.01. Then we regress fixtures (trimmed at the 1st and 99th
percentiles) on indicators of high-risk tankers interacted with period dummies, controlling for tanker fixed
effects and time×tanker-type fixed effects. 95% confidence intervals using standard errors double clustered
by tanker and time×tanker-type levels are shown. Plot B. shows analogous coefficients to examine the routes
taken by high-risk tankers. The dependent variable equals one in a month when a tanker passes within 12
nautical miles of Iran, Russia, or Venezuela (only before 2024) from Feb 2023 to Mar 2024. Plot C. shows
analogous coefficients to examine the effect of the disclosure on the probability of tanker owner changes for
high-risk tankers. Our proprietary tanker ownership data contains six snapshots: Dec 2022, Mar, Jul, Sep,
Dec 2023, and Mar 2024. The dependent variable is a zero-one indicator of owner changes by comparing
the owner names across two snapshots. Since the time spans between consecutive snapshots are different,
we make them comparable by annualizing the owner change variable. The pre-period includes Dec 2022 -
Mar 2023 and Mar - Jul 2023. The post-period includes Jul - Sep 2023, Sep - Dec 2023, and Dec 2023 - Mar
2024.
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pre-trends. Post-period, there is a gradual drop reaching about 10 percentage points at the

end of our sample.

Finally, in Plot C of Figure 3 we examine whether tankers newly classified as high/moderate-

risk become harder to sell after the disclosure. This hypothesis is based on the fact that many

sanctions regimes explicitly prohibit transactions involving violating entities (e.g., see Coun-

cil Regulation (EU) 833/2014 on such restrictions, Skadden, 2024). Here, we use proprietary

tanker ownership data from Drewry, showing owner names and countries in six snapshots

between December 2022 and March 2024. The dependent variable equals one if owner names

differ across two snapshots and zero otherwise. To account for different time spans between

snapshots, we annualize the ownership change variable. Plot C shows that the disclosure

has indeed reduced the turnover of high/moderate-risk tankers (which we merge together in

this panel due to small sample sizes here), making them less desirable.

While this visual evidence is suggestive, and post-period coefficients in Figure 3 are

uniformly lower than the pre-period ones, month-by-month estimation is noisy. To mitigate

noise, we aggregate post-period indicators into a single dummy I{t≥0}, and estimate ATT

separately for high-risk and moderate-risk tankers. In a matched sample with high- and

low-risk tankers, we run the following regression:

fixturec,i,k,t = β
H
× high riski × I{t≥0} + αi + γk,t + ϵc,i,k,t, (2)

where β
H

is the ATT for high-risk tankers. We perform a similar estimation for moderate-

risk tankers by replacing high riski with moderate riski. The first three columns in Panel

A of Table 2 presents the PSM-DiD regression results for fixtures.

Next, we check for the robustness of our findings to using a different DiD estimator, as

in Abadie (2005). Compared with ad hoc PSM-then-DiD implementations, Abadie (2005)

provides a semiparametric matching DiD estimator that identifies the ATT under parallel

trends in untreated potential outcomes and allows for time-invariant unobserved hetero-

geneity. The estimator reduces reliance on parametric outcome specifications and offers a

more standardized procedure with established asymptotics. Further details are in Internet

Appendix E.

Since Abadie (2005) is a matching-based DiD estimator and does not include regression-

style fixed effects, we pre-process outcomes to net out additive macro trends. Specifically,

for each month t we subtract the cross-sectional mean outcome among untreated fixtures,

and in an alternative specification we subtract the month-by–tanker-type mean (and thus

adjust for tanker-type-level monthly changes in freight rates) among untreated fixtures. We

then implement the Abadie (2005) matching estimator on first-differenced outcomes. Results
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are robust to omitting this pre-processing, and we report all three versions of the estimated

ATT, i.e., using raw fixtures, fixtures demeaned by time, and fixtures demeaned by time and

tanker type, respectively.

The first three columns in Panel B of Table 2 shows results from this method for fixtures.

The sample size in panel B is smaller than in panel A, because Abadie (2005)’s estimation

uses a tanker-level sample (not a tanker-month level one), and also excludes tankers without

both pre- and post-period fixtures (because the dependent variable is post-period average

fixture minus pre-period average fixture).

The results show that, after the information shock, the fixtures of high-risk tankers

decreased by an average of 16.45 WS units, ranging from 13.75 to 20.71 units. This translates

to a 13% earnings drop (16.45/126.8), relative to the counterfactual. No significant change

is observed for moderate-risk tankers.

Of note here is that while matching on observables reduces imbalance, we recognize that

unobserved differences between risky and low-risk tankers may still bias our estimates. To

mitigate such concerns, we assess the robustness of our results. Our evidence suggests that

they remain similar, not only across multiple methods and bandwidth choices, but also when

we use logistic regression for propensity scores, drop August 2023 (to allow about two weeks

for the disclosure effect to come into force), omit Russia, and use bootstrap standard errors.

We present these robustness tests in Table A-5 in the Internet Appendix.

The middle three columns in Table 2 present the estimation of ATT on route changes,

combining post-period months into a single dummy, as we did for fixtures. As AIS signals

are observed much more frequently than fixtures, this route test uses more observations.

The PSM-DiD results in Panel A show that high-risk tankers are about seven percentage

points less likely to pass close to sanctioned countries, with no significant effect on moderate-

risk tankers. The average probability of signals in these areas is 40 percentage points for

high-risk tankers in July, it drops by 17% (6.8/40) in the post-period. Panel B using Abadie

(2005)’s semiparametric DiD yields similar results. Overall, our evidence suggests that high-

risk tankers avoid approaching sanctioned countries after the disclosure.

The last three columns in Table 2 present results on tanker ownership changes in a

regression setting similar to the other columns. Our evidence shows that that after the

information shock, high-risk (moderate-risk) tankers are 16.4-18.5 (14.6-16.8) percentage

points less likely to change owners. This represents a 37% drop in liquidity for high-risk

tankers, relative to a pre-disclosure annualized turnover of 45.4 percentage points (17/45.4).

In one further exercise (reported in Internet Appendix Table A-6) we examine whether

U.S. and U.S.-allied charterers start avoiding tankers classified as high or moderate risk

by Windward. Our evidence shows a significant drop in high-risk tankers usage by U.S.
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Table 2: Difference-in-differences analysis

This table reports the coefficients (i.e., average treatment effects on the treated, ATT) estimated with PSM-DiD and Abadie (2005)’s semiparametric
DiD to examine the change in (i) fixtures, (ii) routes, and (iii) ownership for high/moderate-risk tankers after the Refinitiv disclosure. The sample
period is from Feb 2023 to Mar 2024, and the post-period starts from Aug 2023. In panel A, we match tankers within each type and calculate
weights based on propensity scores and a Gaussian kernel with a bandwidth of 0.01, 0.03, or 0.05. Then, we do DiD estimation in the matched sample,
controlling for tanker fixed effects and time×tanker-type fixed effects, with standard errors double clustered at the tanker and time×tanker-type levels.
In panel B, we implement Abadie’s method by collapsing our sample into two cross-sections by calculating each tanker’s pre- and post-period averages
of the dependent variables. Since Abadie’s estimator is derived without directly accounting for macro trends, we manually subtract the cross-sectional
mean by tanker type to account for time×tanker-type fixed effects. We trim the fixtures at the 1st and 99th percentiles each month to avoid the
influence of outliers, and derive standard errors as in Abadie (2005). *, **, *** denote significance at the 10%, 5%, and 1% level, respectively.

Panel A: PSM-DiD

Dependent variable I. Fixtures
II. Showing AIS signals
near sanctioned countries

III. Owner change

Bandwidth 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

ATT for High Risk -16.06*** -15.15** -14.61** -0.073*** -0.072*** -0.071*** -0.183*** -0.169*** -0.164***
[-2.69] [-2.39] [-2.31] [-3.69] [-3.76] [-3.79] [-3.25] [-2.91] [-2.87]

Obs. (tanker-months) 5,378 5,574 5,574 39,246 39,246 39,246 11,402 11,402 11,402

ATT for Moder. Risk -0.68 -1.20 -1.49 -0.016 -0.015 -0.015 -0.168*** -0.159** -0.152**
[-0.17] [-0.32] [-0.41] [-1.01] [-1.02] [-1.05] [-3.30] [-2.79] [-2.50]

Obs. (tanker-months) 6,081 6,083 6,083 43,820 43,820 43,820 11,776 11,776 11,776

Time × Type FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Tanker FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Panel B: Abadie (2005) Semiparametric DiD

raw by time
by time
× type

raw by time
by time
× type

raw by time
by time
× type

ATT for High Risk -18.42*** -20.71*** -13.75*** -0.067*** -0.067*** -0.060*** -0.185*** -0.184*** -0.170***
[-3.56] [-4.47] [-3.16] [-4.01] [-4.03] [-3.60] [-3.30] [-3.29] [-3.04]

Obs. (tankers) 1,036 1,036 1,036 2,543 2,543 2,543 2,346 2,346 2,346

ATT for Moder. Risk -3.74 -5.09 -0.51 -0.012 -0.012 -0.008 -0.168*** -0.167*** -0.146***
[-0.88] [-1.40] [-0.15] [-0.97] [-0.96] [-0.62] [-3.20] [-3.18] [-2.77]

Obs. (tankers) 1,190 1,190 1,190 3,139 3,139 3,139 2,421 2,421 2,421
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charterers, while effects for U.S.-allied charterers are not statistically significant.

Finally, we examine whether selection issues affect our data, specifically if the information

shock altered high/moderate-risk tankers’ reporting of their fixture contracts to our data

vendor. Results in Internet Appendix Table A-7 show no evidence of changes in reporting

by risky tankers. Note that our ownership change data does not come from reports to

Refinitiv, and is not affected by such potential selection issues.

3 Sanctions and Disclosure through the Lens of a Model

In this section, we develop a dynamic structural model of intermediaries and sanctions,

and calibrate it using data from the oil shipping market and our Windward event-study

results from the preceding section. The model (i) enables us to quantify the impact of

the Refinitiv disclosure on two key actors for whom data is unavailable – actual sanctions-

violating tankers (as opposed to suspected violators detected by Windward) and exporters

of sanctioned oil. Additionally, (ii) the model suggests one way to reconcile Windward’s

ex-ante low valuation with the substantial changes its disclosure produces. This particular

modeling choice also provides one explanation for why Windward might have been stuck in

a low-valuation trap, which might, in turn, have led them to disclose the list at low cost to

publicize their accuracy. Finally, (iii) we use the model to generate a counterfactual where

sanction penalties are increased further.

3.1 Theoretical Framework

3.1.1 Environment

We model the oil-shipping sector. Our economy consists of oil exporters and tankers.

• ‘Rogue’ (R) exporters deal in sanctioned products (e.g., Iranian oil companies), while

‘Clean’ (C) exporters deal in non-sanctioned, legally-traded products (e.g., U.S. oil

companies).

• Tankers are either ‘Good’ (G), i.e., those that have never carried sanctioned oil, or

‘Bad’ (B), i.e., those that have done so at least once in the past. A Bad tanker cannot

revert back to being Good, reflecting the fact that tankers can be sanctioned for past

violations. Once a Bad tanker is sanctioned and put on a designated list it cannot

be hired by any exporter. However, some Bad tankers are not sanctioned yet, and

these are the main source of risk for an exporter in our model, who faces penalties and

disruptions if such tanker is sanctioned while in their employ.
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• Third parties like banks, insurers, tanker charterers, etc. who provide intermediary

services face similar risks if engaging with Bad tankers. Therefore, we do not explicitly

include them in the model for simplicity; one can think of them as all being folded into

the Clean exporter category.

• Rogue exporters know which tankers are Bad because they have employed them pre-

viously. Clean exporters only know that a proportion λ of all tankers are Bad (λ is

common knowledge). They use a noisy detection technology that classifies a portion

λ of tankers as High-risk (H), and the rest as Low-risk (L). We assume a stationary

environment where the proportion of Bad tankers, λ, is constant.

• Tankers know if they are Bad, and can also infer their risk label (H or L) from the fixture

quoted to them by a randomly matched Clean exporter (we assume, for simplicity, that

search frictions prevent tankers from shopping for rates from different Clean exporters).

Rogue exporters do not know the fixtures quoted by Clean exporters (who compete

with them for tankers), and hence cannot infer risk labels.

3.1.2 Timeline

We assume the following sequence of events each period:

1. Clean exporters optimally choose detection technology and assign risk labels to tankers.

2. An aggregate i.i.d. mean-zero shock ϵ̃ to the oil trading revenue of all exporters realizes,

reflecting unpredictable oil price changes that exporters cannot hedge ex-ante.

3. All exporters choose simultaneously freight rates to offer to tankers: Clean exporters

choose pL and pH for L and H tankers, respectively, and Rogue exporters choose p
R
G

and p
R
B for Good and Bad tankers.

4. Each tanker receives two freight rates: one from a randomly matched Clean exporter

and another from Rogue exporters, and decides whom to engage with.

5. The sanctioning authority sanctions (a subset of) violators.

6. Each player receives a payoff and proceeds to the next period (tankers continue to the

next period only if not sanctioned in this period).

3.1.3 Clean exporters’ detection technology

Signals

There are N Clean exporters, indexed by i. To detect whether a given tanker j is Bad, Clean
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exporters rely on three potential sources of information (we omit here the tanker index j for

brevity).

(i) A common signal s
C,com

, based on public information, available at zero cost and with

fixed precision σ
−2
ζ :

s
C,com

= I(Bad Tanker) + ζ, ζ ∼ N(0, σ2
ζ), ζ ⫫ u. (3)

(ii) A private signal s
C,pri
i , with precision σ

−2
ξ,i :

s
C,pri
i = I(Bad Tanker) + ξi, ξi ∼ N(0, σ2

ξ,i). ξi ⫫ u, ζ, (4)

Clean exporter i can reduce σξ,i by paying a (continuous) cost:

Ω(σξ,i) = κσ
−2
ξ,i , (5)

where κ is a constant calibrated by matching moments.
6

(iii) A signal s
W

that can be bought for a fixed price P
W

from a specialized data provider

like Windward. In our model, such a profit-motivated data intermediary plays a key

role, as its data release represents the information shock that we examine.

As Windward integrates information from multiple sources, that include the United

Nations, European Border and Coast Guard Agency (Frontex), and various U.S. agen-

cies, among others, we model Windward’s signal as a noisy version of a signal s
A
, which

is only available to the sanctioning authority:

s
W

= s
A
+ v, v ∼ N(0, σ2

v), v ⫫ u, ζ, ξ. (6)

s
A
determines the probability of sanctioning the given tanker, as specified below.

The common signal in Eq. (3) reflects due diligence conducted using public data. The

private signal in Eq. (4) captures the requirement imposed by the sanctioning authority that

market participants do their own due diligence, which is motivated by its belief that these

participants have private information on suspicious sanctions-violating behavior. Although

we lack details on the exact private information Clean exporters have, industry reports reveal

the equilibrium cost they pay for due diligence, enabling us to calibrate relevant parameters.

Windward’s signal s
W

in Eq. (5) – unlike the common signal s
C,com

– contains informa-

tion about the authority’s signal which determines sanctions. However, Clean exporters do

6
This functional form satisfies the no-arbitrage condition in information acquisition: the cost of in-

dependently acquiring two signals with (im)precision σA and σB and then optimally combining them,
Ω(σA) + Ω(σB), is the same as the cost of directly acquiring a signal with the combined (im)precision,

Ω(1/
√
σ−2
A + σ−2

B ).
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not know the precision of this signal ex-ante, i.e., they do not know σ
2
v before the disclosure,

but form beliefs about it. In Section 3.2.3, we specify how their beliefs can be calibrated

from Windward’s observed equity market value. For now, let σ̃
−2
v,i denote Clean exporter i’s

posterior belief on Windward’s precision.

From signals to risk labels:

Clean exporters optimally choose whether to buy Windward’s signal, to what extent they

want to improve the precision of their private signal by paying the associated cost, and how

to combine the signals. For the latter, we assume that they weigh each signal by the inverse

of its noise variance.

Let χ = 1 (χ = 0) indicate a Clean exporter’s decision to buy (not buy) Windward’s

information (we study a symmetric equilibrium in which all Clean exporters choose the

same action). Before the disclosure, the expected precision of the combined signal is σ
−2
ζ +

σ
−2
ξ + χ ⋅ (σ2

u + σ̃
2
v)−1, and the cost is Ω(σξ) + χ ⋅ PW

. After the disclosure, clean exporters

have free access to s
W

and can observe its precision. Accordingly, the combined signal’s

precision becomes σ
−2
ζ + σ

−2
ξ + χ ⋅ (σ2

u + σ
2
v)−1, and the cost reduces to Ω(σξ).

Let s
C
denote the optimally combined signal. Clean exporters assign risk labels to tankers

by applying a threshold K to s
C
: a tanker is classified as High-risk (H) if s

C
exceeds K, and

as Low-risk (L) otherwise. The threshold K is chosen to satisfy

E(sC ≥ K) = λ. (7)

3.1.4 Sanctions

The sanctioning authority allocates to each tanker j monitoring resources aj, which depend

on a noisy signal s
A
j that it receives about the tanker’s type:

aj = f(sAj ), and f
′(⋅) > 0. (8)

where

s
A
j = Ij(Bad Tanker) + uj, uj ∼ N(0, σ2

u). (9)

To simplify analysis, we specify

f(sAj ) =
exp(sAj )

E[exp(sAj )]
, (10)

so that aj is always positive and E[aj] = 1.

The probability that a given tanker j is sanctioned is:

Pj(sanctioned) = aj ⋅ [π1 ⋅ Ij(Bad tanker) + π2 ⋅ Ij(deal with R)], (11)
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where Ij(Bad tanker) equals one if this tanker is Bad and zero otherwise, Ij(deal with R)
equals one if the tanker is currently transporting sanctioned oil and zero otherwise, π1 is

the probability per unit of resource that the tanker is sanctioned for past violations (i.e., for

being Bad), and π2 is this probability of a current violation (i.e., transporting sanctioned oil

from Rogue exporters in the current period). The parameters, π1 and π2, reflect legal and

other technical constraints that the authority faces in sanctioning tankers.

3.1.5 Beliefs about exposure to sanctions-related penalties

Tankers: Depending on its type and risk label, each tanker belongs to one of four groups –

GL, GH, BL, or BH. Each tanker j knows its group and the sanctioning authority’s resource

allocation mechanism as in Eq.(8), but does not know aj (i.e., exactly how intensely the

authority is monitoring it). Given Eq.(11), we can obtain the expected sanction probabilities

for tankers in each group, conditional on their information set. Adding to the group index a 0

or 1, depending on whether the tanker is currently transporting sanctioned oil (i.e., whether

I(deal with R) is 0 or 1), these conditional probabilities are:

w̄GL0 = 0, w̄GL1 = E[a∣G,L] ⋅ π2,

w̄GH0 = 0, w̄GH1 = E[a∣G,H] ⋅ π2,

w̄BL0 = E[a∣B,L] ⋅ π1, w̄BL1 = E[a∣B,L] ⋅ [π1 + π2]
w̄BH0 = E[a∣B,H] ⋅ π1, w̄BH1 = E[a∣B,H] ⋅ [π1 + π2], (12)

where we again omit the tanker index j for brevity. Note that w̄GL0 = w̄GH0 = 0 because

Good tankers know that they will not be sanctioned due to past violations; this assumes

that these tankers are always “cleared” if investigated for past violations.

Clean exporters: They calculate the expected probabilities of L and H tankers being

sanctioned as follows:

w̄
C
L =

QGL

QGL +QBL
w̄GL0 +

QBL

QGL +QBL
w̄BL0,

w̄
C
H =

QGH

QGH +QBH
w̄GH0 +

QBH

QGH +QBH
w̄BH0, (13)

where QGL, QGH , QBL, and QBH are the number of tankers in each group that Clean ex-

porters hire in equilibrium. These probabilities imply that Clean exporters realize that the

proportion of Good vs. Bad tankers among the tankers that they hire is likely to be different

from the proportion of Good vs. Bad tankers among all tankers, as tankers of specific types
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could be more likely to engage with them.
7

Rogue exporters: They only know tanker types but not their risk labels. So they calculate

the expected sanction probabilities for the G and B tankers that they hire as:

w̄
R
G =

Q
R
GL

QR
GL +QR

GH

w̄GL1 +
Q

R
GH

QR
GL +QR

GH

w̄GH1,

w̄
R
B =

Q
R
BL

QR
BL +QR

BH

w̄BL1 +
Q

R
BH

QR
BL +QR

BH

w̄BH1. (14)

3.1.6 Exporters’ optimization

The objective of the exporters is to maximize profits. The per-unit oil trade revenue for

Clean exporters, r̃, and for Rogue exporters, r̃
R
, are

r̃ = r + ϵ̃, r̃
R
= r

R
+ ϵ̃, (15)

where r and r
R
are mean values and ϵ̃ is the aggregate shock, uniformly distributed over

[−σ, σ]. For simplicity, we assume a fixed ratio r
R

r
, which implies a constant discount on

sanctioned oil.
8

Exporters’ costs include (i) information acquisition cost (only for Clean exporters), (ii)

payments to tankers, and (iii) penalties if the tanker they employ is sanctioned. The sanc-

tion penalties are z
C
and z

R
for Rogue and Clean exporters, respectively. We assume that

z
R
> z

C
, as a Rogue exporter’s entire oil cargo could be impounded if a tanker carrying it

is caught and sanctioned, which is significantly more costly than the delays and penalties

facing a Clean exporter for hiring a Bad tanker that now gets sanctioned but is currently

carrying unsanctioned oil.

Clean exporters: They first choose their detection technology (i.e., σξ and χ), and then

set prices pL and pH . Given the i.i.d. environment, the decisions on detection technology

and prices are taken period by period.

We first consider the Clean exporters’ price decision. Since tankers and exporters are

randomly matched in a pair (Section 3.1.2), each Clean exporter occupies a 1

N
portion of the

7
Note that here each party’s beliefs depend on quantities that they do not know ex-ante (e.g., Clean

exporters never observe QGL and QBL separately – they only observe the sum, as they cannot distinguish
between G and B tankers). In a rational expectations equilibrium, however, each party will make guesses
about these unknown components such that their beliefs are consistent with model solutions (and therefore
with each other).

8
Consistent with the data in the months surrounding the Refinitiv disclosure (see, e.g., Inside Shipping,

2024).
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market, and does not compete with other Clean exporters. For a given detection technology,

each Clean exporter optimally chooses prices to maximize profits:

Π̃ = max
{pL,pH}

1

N
(QGL +QBL)(r̃ − pL − w̄

C
L z

C) + 1

N
(QGH +QBH)(r̃ − pH − w̄

C
Hz

C), (16)

where w̄
C
L and w̄

C
H are expected sanction probabilities defined in Eq.(13). The Q’s are

functions of the prices, which are derived from tankers’ optimization (as described below).

We use backward induction to derive Clean exporters’ detection technology. Let Π denote

the expected equilibrium profit, given these exporters’ belief about Windward’s precision σ̃
−2
v

(again, symmetry implies same equilibrium beliefs):

Π(σξ, χ; σ̃
2
v) = E[Π̃∣σ̃2

v] (17)

The optimization problem is then

max
{σξ,χ∈{0,1}}

Π(σξ, χ; σ̃
2
v) − Ω(σξ) − χ ⋅ P

W
, (18)

with optimality conditions

∂Π(σξ, χ)
∂σξ

=
∂Ω(σξ)
∂σξ

, χ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if Π(σξ, 1) − Π(σξ, 0) < P
W
,

1, if Π(σξ, 1) − Π(σξ, 0) > P
W
,

0 or 1, if Π(σξ, 1) − Π(σξ, 0) = P
W
.

(19)

Rogue exporters: They solve the optimization problem only for prices:

max
{pRG,pRB}

(QR
GL +Q

R
GH)(r̃R − p

R
G − w̄

R
Gz

R) + (QR
BL +Q

R
BH)(r̃R − p

R
B − w̄

R
Bz

R), (20)

where w̄
R
G and w̄

R
B are expected sanction probabilities defined in Eq.(14).

3.1.7 Tankers’ optimization

Tankers observe freight rates (fixtures) quoted to them by Clean and Rogue exporters and

decide whom to engage with. Because a Good tanker becomes irreversibly Bad if it en-

gages with Rogue exporters, tankers must consider their continuation values when making

decisions.

Let VG and VB denote the values of Good and Bad tankers, and VGL, VGH , VBL, VBH

denote the values further conditional on risk labels. Let θB = P[H∣B] and θG = P[H∣G].
The tanker values satisfy the following relations:

VG = θGVGH + (1 − θG)VGL, VB = θBVBH + (1 − θB)VBL. (21)
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The tankers’ Bellman equations are

VGL = E [max {pL − w̄GL0 ⋅ z + βVG, p
R
G − c̃ − w̄GL1 ⋅ z + βVB}] ,

VGH = E [max {pH − w̄GH0 ⋅ z + βVG, p
R
G − c̃ − w̄GH1 ⋅ z + βVB}] ,

VBL = E [max {pL − w̄BL0 ⋅ z + βVB, p
R
B − c̃ − w̄BL1 ⋅ z + βVB}] ,

VBH = E [max {pH − w̄BH0 ⋅ z + βVB, p
R
B − c̃ − w̄BH1 ⋅ z + βVB}] . (22)

where w̄GL0, w̄GL1, etc., are expected sanction probabilities defined in Eq.(12), and c̃ is a

random cost that a tanker incurs each period when dealing with Rogue exporters. Observed

only by the tanker before choosing an exporter to deal with, this cost is assumed to be

uniformly i.i.d. over [0, c̄] and allows us to obtain interior solutions for tanker supply. Such

a cost may arise from efforts to avoid detection, reflecting tanker-specific variables like its

location, route, and violation technology.

The penalty imposed on a Bad tanker when sanctioned is z, assumed for simplicity to

equal the tanker’s entire value. Given discounting, this penalty is

z = βVB. (23)

The critical values c̃j at which tanker j would be indifferent between dealing with a Clean

or Rogue exporter are then:

cGL = p
R
G − pL − (w̄GL1 − w̄GL0)z − β(VG − VB), cBL = p

R
B − pL − (w̄BL1 − w̄BL0)z,

cGH = p
R
G − pH − (w̄GH1 − w̄GH0)z − β(VG − VB), cBH = p

R
B − pH − (w̄BH1 − w̄BH0)z.

For c̃j below (above) such a critical value, the tanker prefers to deal with a Rogue (Clean)

exporter. Using these critical values, we derive that

VG =

θGE [ (cGH)2
2c̄

+ pH] + (1 − θG)E [ (cGL)2
2c̄

+ pL] − [θGwGH0 + (1 − θG)wGL0]z
1 − β

, (24)

VB =

θBE [ (cBH)2
2c̄

+ pH] + (1 − θB)E [ (cBL)2
2c̄

+ pL] − [θBwBH0 + (1 − θB)wBL0]z
1 − β

, (25)

where the expectation is over next period’s aggregate shock ϵ̃.

3.1.8 Equilibrium

A stationary equilibrium is characterized by: (i) Clean exporters’ choice of detection tech-

nology (i.e., σξ and χ); (ii) Clean and Rogue exporters’ freight rates p
R
G(ϵ̃), pRB(ϵ̃), pL(ϵ̃),

pH(ϵ̃), where ϵ̃ refers to the aggregate shock in the current period; and (iii) tankers’ decision

rule based on the critical values cGL(ϵ̃), cGH(ϵ̃), cBL(ϵ̃), cBH(ϵ̃), which satisfy
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• Optimality: Clean exporters optimally choose detection technology; Clean and Rogue

exporters optimally set prices to maximize their profits; tankers maximize their values

• Market clearing: the market clears for all. In particular, for Clean exporters (Qxy) and

Rogue exporters (Q
R
xy) this implies, respectively

Qxy = Axy (1 −
cxy
c̄ ) , Q

R
xy = Axy (

cxy
c̄ ) , xy ∈ {GL,GH,BL,BH},

where AGL = (1 − λ)(1 − θG), AGH = (1 − λ)θG, ABL = λ(1 − θB), and ABH = λθB.

The model solution is described in detail in Internet Appendix F.

3.2 Model calibration and fit

3.2.1 Directly calibrated parameters

We focus on changes in market equilibrium in response to the disclosure. We directly cal-

ibrate seven parameters. The discount factor β is set to 0.85, accounting for both time

discounting and tanker depreciation.
9

Based on Lloyd’s List (2023), we set the propor-

tion λ of Bad tankers to 0.1. We normalize r to one – this is Clean exporters’ mean

oil trade revenue per voyage, or, more precisely, their profits before shipping costs. This

revenue amounts to 15.5 mln for an average tanker (i.e., 0.8 million barrels at $70 per

barrel with a 27.7% before-shipping profit margin – this was the oil industry’s operating

margin for 2023 Q2 as per CSI Market, 2023). The mean revenue of Rogue exporters is

r
R
= (70×0.277−4)/(70×0.277) = 0.794, assuming a $4 per barrel discount (as for Russian

exports to India in the second half of 2023, Reuters, Sept. 2023).

Given that OFAC’s civil monetary penalties typically depend on the amount of the

sanctions-violating transaction (CFR, Appendix A to Part 501), we set the sanction penalty

z
C

for Clean exporters dealing with Bad tankers equal to the freight cost they pay, i.e.,

around $3 mln in 2023 (e.g., Inside Shipping, 2024, 0.8 million barrels at $4/barrel), which
implies z = 3/15.5 = 0.194. We set the sanction penalty z

R
for Rogue exporters based on

the median value from actual cases of seized oil (e.g., U.S. Attorney’s Office, 2024), resulting

in z
R
= 50/15.5 = 3.226.

3.2.2 Parameters derived from moments matching

We calibrate the remaining nine parameters by matching nine moments. These parameters

are: the per-unit-resource sanction probabilities π1 and π2, max operation cost when deal-

9
Assuming a time-discounting rate of 0.95, a 10% scrap value, and a 20-year further life cycle (given these

are 10-15 year old tankers) gives 0.95 × exp(log(0.1)/20) ≈ 0.85.
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ing with Rogue exporters c̄, volatility of oil trade revenue σ, precision of the public signal

σ
−2
ζ , precision of the authority’s signal σ

−2
u , precision of the Windward’s signal σ

−2
v , Clean

exporters’ belief on Windward’s signal σ̃v, and coefficient on information acquisition cost κ.

To identify the sanction probabilities, π1 and π2, and precision of the authority’s signal,

σ
−2
u , we mainly rely on three moments: actual proportion of sanctioned tankers, the disclo-

sure’s effect on tankers’ fixtures, and the disclosure’s effect on tankers’ routes (these come

from the DiD estimations in Table 2). These moments are particularly relevant because the

actual proportion of sanctioned tankers mainly depends on π1 and π2, and the disclosure

effects are determined by the authority’s signal precision (as the disclosure releases a noisy

version of the authority’s signal) and the sanction probabilities π1 and π2.

We identify the maximum operation cost c̄ and the volatility of oil trade revenue σ

mainly by matching two moments: the volatility-to-mean ratios for low- and high-risk tanker

fixtures. The two moments facilitate identification because c̄ mainly contributes to the levels

of low- and high-risk tanker fixtures, while σ contributes to the volatility of fixtures.

We use the two pseudo-R
2
s of sanction predictability, based on the pure-public signal

and the Windward-and-public-data combined signal, to pin down the precision of the public

signal, σ
−2
ζ , and the Windward signal, σ

−2
v . We use Windward’s market value to uncover

Clean exporters’ belief in Windward’s precision σ̃
−2
v , as explained in the following section.

Finally, we identify the coefficient on information acquisition cost κ by assuming this cost

to be the major component of compliance costs and then match the ratio of non-compliance

costs to compliance costs (see Secureframe (2025) and Globalscape). The moments and the

parameters derived from moments matching are in Panels B and C of Table 3.

3.2.3 Calibrating σ̃v

Recall that in Section 3.1.3 we left flexible the Clean exporters’ beliefs about Windward’s

precision σ
−2
v . The most straightforward assumption would be to impose full rational expec-

tations, i.e., σ̃v = σv.

However, adopting this assumption results in a significant divergence between the model-

implied values and the observed data, most notably with respect to Windward’s valuation.

Specifically, under this assumption our model would imply the valuation of its signal about

suspect tankers to be $5,405 mln in July 2023, whereas in fact the total equity valuation of

Windward at that time was $42 mln.

This divergence is so substantial that it is robust to many alternative modeling assump-

tions about the structure of the shipping market. Intuitively, a data provider like Windward’s

valuation depends on the value of the signal they provide, which, in turn, depends on market

participants’ expected incremental profits from buying that signal, which is at most $27 mln

27

https://secureframe.com/blog/sanctions-non-compliance-fine
https://www.globalscape.com/resources/whitepapers/data-protection-regulations-study


in July 2023 given stock market prices.
10

This suggests that no market participant believed

that buying Windward’s signal would increase their profits beyond this amount (i.e., a high

σ̃v). However, as demonstrated in Section 2.2, the revenue of high-risk tankers declined by

13% following the Refinitiv disclosure, and these tankers started avoiding sanctioned ex-

porters. Both of these findings indicate a large spillover of high-risk tankers in the Clean oil

shipping market, reducing Clean exporters’ shipping costs. Such a reduction, in turn, would

imply that their incremental profits could be significantly higher than $27 mln. But had

these exporters anticipated such large incremental profits (i.e., had they correctly believed

σ̃v = σv), they should have been willing to pay much more for Windward’s data, and its

valuation should have accordingly been much higher.

Moving away from the equality σ̃v = σv, however, brings forth the challenge of pinning

down what exact value to assign to σ̃v in the calibration among the many possibilities. Next

we explain how we do this, by referring back to Windward’s equity valuation.

Clean exporter i’s willingness-to-pay for Windward’s signal, δ̃i, depends on her belief

about Windward’s precision σ̃
−2
v as follows:

δ̃i(σ̃2
v) = Π(σξ,i, 1; σ̃

2
v) − Π(σξ,i, 0; σ̃

2
v), (26)

where Π(⋅; σ̃2
v) is the expected profit as in Eq.(18) and its argument one or zero denotes

whether Windward’s signal is bought or not. Let the true value of Windward’s information

be δ. We assume that Clean exporters’ prior belief about δ is distributed N(µδ,Σδ). Addi-

tionally, each Clean exporter receives a noisy signal (e.g., from tankers newly sanctioned in

every period or from Windward providing a trial version of their list before purchase) about

the true value of δ: xi = δ + ηi, with independent noise ηi ∼ N(0,Ση). Each Clean exporter

i rationally updates her willingness-to-pay based on her signal xi and Windward’s market

value M
W
:

δ̃i = E[δ∣xi,M
W ]. (27)

The absence of near-arbitrage opportunities implies that

M
W

=

N

∑
i=1

δ̃i + ϵ
W
, (28)

10
While Windward’s total equity valuation was $42 mln, it had other lines of business besides the suspect

tanker list. In the Internet Appendix F.4 we show how we can derive an upper bound of the valuation
specific to its suspect tanker list.
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where ϵ
W

∼ N(0,Σϵ) comes from noise traders.
11

Solving Eq.(27) and Eq.(28) gives

δ̃i = µδ + A(xi − µδ) +B (M
W

N
− µδ) , (29)

where A solves
Ση

Σϵ
(N − 1)(N +

Ση

Σδ
)A3 + A − 1 = 0 and B =

N(N−1)ΣηA
2

Σϵ+N(N−1)ΣηA
2 . The derivation

details are in the Internet Appendix F.3.

Note that, since Windward is a start-up with very short history and sanction rules are

constantly updated yet little new information on violators is provided every period, a Clean

exporter who has not yet decided to buy Windward’s signal (and maybe has a trial version

with a small subset of the data to decide whether to buy) would likely face an information

environment characterized by (i) sufficiently noisy priors on Windward’s accuracy (Σδ/Ση →

c > 0), and (ii) a sufficiently noisy signal xi (Σϵ/Ση → 0). In the Internet Appendix F.3, we

show that under these circumstances A → 0 and B → 1, and hence

δ̃i →
M

W

N
. (30)

Eq.(30) combined with δ̃i(σ̃2
v) = Π(σξ, 1; σ̃

2
v) − Π(σξ, 0; σ̃

2
v) allows us to uncover Clean ex-

porters’ belief from Windward’s market value. In such an equilibrium, Clean exporters are

indifferent between χ = 0 and χ = 1 (i.e., buying or not buying Windward’s signal), as per

Eq.(19), assuming that Windward is competitively priced (i.e., it’s value reflects the entire

surplus it generates).

3.2.4 Implications of σ̃v ≠ σv

The fact that Clean exporters’ ex-ante σ̃v did not equal the true σv reveals an important

friction in the market. Had these exporters been able to recognize Windward’s true accu-

racy in detecting violators, they would have expected much higher incremental profits from

its information, and hence would have been willing to pay for Windward accordingly. A

significantly higher valuation would have motivated the creation of similar companies who

could charge appropriately for detecting suspected violators in different domains. This would

represent an endogenous market-based resolution of the detection challenges.

However, as we demonstrated above, this solution in not supported by the data. With

diffuse priors about Windward’s precision and inadequate additional information to update

beliefs over time, it is rational for Clean exporters to try to infer this precision by learning

from the company’s market value. And this means that a wide range of beliefs and asso-

ciated valuations can be justified in equilibrium. If the market somehow underestimated

11
For example, if M

W
<< ∑N

i=1 δ̃i, all Clean exporters can buy Windward together to realize the surplus.
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Windward’s value, noisy learning would have prevented convergence to the truth. Such a

situation, where Windward gets stuck in a value trap, could then justify the company re-

leasing their signal at very low cost to demonstrate its true accuracy (and thus benefit its

other lines of business). In fact, Windward’s stock market valuation had indeed dropped to

half of its IPO value and stayed at that level or below for over a year before the disclosure

– i.e., the undervaluation was indeed persistent.

Two further features in the data are consistent with this interpretation: (1) Windward

tried to maximize the reach of its disclosure by releasing the list via Refinitiv Eikon, a widely

used platform, rather than on its own website. This is consistent with the point of the

disclosure being publicity. (2) The demonstration led to increased demand for Windward’s

other services, as the market revised its beliefs about the firm’s overall detection capabilities,

helping offset any revenue lost from giving away the sanctions list for free. Following the

disclosure, Windward’s valuation actually rose sharply, and the firm was ultimately taken

private in March 2025 at a valuation of $270 mln. This indicates that Windward was right

about the market updating its beliefs positively about their business in such a way that the

disclosure would end up being value increasing, i.e, ex-ante the disclosure was justified given

the later value increase.

3.2.5 Model fit

We report the moment matching results in Table 3 Panel B. In particular, the disclosure

effects on high-risk tankers’ fixture and route in the model (i.e., -0.126 and -0.184) are close

to the values in the data (-0.13 and -0.17), and the remaining moments are similarly well

matched.

We also compare the values of other model variables that are not targeted in our calibra-

tion with the data. First, the volatility of oil trade revenue derived from moments matching is

σ = 0.26, consistent with the Oil Volatility Index OVX around 28% in 2023 (OVX measures

oil price volatility, and hence, earnings volatility). Second, the model-implied freight rate

premium paid by Rogue exporters relative to Clean exporters is around between 100-200%,

as per Panel D in Table 3. This is closer to the high end of the sanctions premium reported

in the media for Russian oil delivered to Indian and Chinese ports in August 2023 (e.g.,

Inside Shipping, 2024, which reports calculations from Argus Media). Third, model-based

tanker values range between $40 to $60 mln, comparable to the actual values for 15-year-old

tankers as per Xclusiv (2023), and noting that the average age of the crude oil tanker fleet

in 2023-2024 was 13-14 years, per AXSmarine (2025).

Overall, our model-based estimates appear to align reasonably well with their correspond-

ing values reported by alternative sources, offering some confidence in the reliability of the
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Table 3: Model parameters, moments matching, and implied quantities
This table presents the directly-calibrated model parameters in Panel A, the moments that we match in
Panel B, the parameters derived from moments matching in Panel C, the imputed quantities in Panel D.
These results are discussed in Sections 3.2 and 3.3.

Panel A: Directly calibrated parameters

Variable Calibration method Symbol Value

Discount factor time-discounting (0.95) × depreciation β 0.85
Proportion of Bad tankers see Section 3.2.1 λ 0.1
Mean oil trade revenue (Clean exporters) $15.5m, normalized to one r 1

Mean oil trade revenue (Rogue exporters) $4 per barrel discount r
R

0.794

Sanction penalty (Clean exporters) $3m, comparable to shipping costs z
C

0.194

Sanction penalty (Rogue exporters) $50m, based on the median value from
actual cases of seized oil

z
R

3.226

Panel B: Matched moments

Moment Model analog Data Model

Proportion of sanctioned tankers
(average of pre- and post-Windward periods)

E[Qpre
Sanc+Q

post
Sanc]

2
0.7% 0.89%

Disclosure’s effect on high-risk tankers’ fixtures
(DiD estimation in Table 3)

E[ppost−ppre∣Post H]
E[ppre∣Post H] -0.13 -0.126

Disclosure’s effect on high-risk tankers’ routes
(DiD estimation in Table 4)

E[bpost−bpre∣Post H]
E[bpre∣Post H] -0.17 -0.184

Annualized volatility of low-risk tankers’ fixtures
before the disclosure (divided by mean)

std[ppre
L ]

E[ppre
L ] 0.77 0.788

Annualized volatility of high-risk tankers’ fixtures
before the disclosure (divided by mean)

std[ppre
H ]

E[ppre
H ] 0.81 0.829

Pseudo-R
2
for predicting to-be-sanctioned tankers

with the public signal
See Internet Appendix F 4.3% 4.4%

Pseudo-R
2
for predicting to-be-sanctioned tankers

with the public-Windward-combined signal
See Internet Appendix F 15.4% 15.4%

Valuation of the Windward’s signal (based on
the share price one day before the disclosure)

Π(σ∗
ξ , 1) −Π(σ∗

ξ , 0) $27m $27m

Non-compliance costs divided by compliance costs
(see Secureframe (2025))

E[(Qpre
GL+Q

pre
BL)w̄C

L z
C+(Qpre

GH+Q
pre
BH)w̄C

Hz
C]

Ω(σ∗
ξ)

2.71 2.70

Panel C: Parameters derived from moments matching

Variable Symbol Value

Sanction probability per unit of resource (previous violation) π1 2.6%
Sanction probability per unit of resource (current violation) π2 3.0%
Max operation cost when dealing with Rogue exporters c̄ 0.89
Volatility of oil trade revenue σ 0.26
Noise volatility in the public signal σζ 0.68
Noise volatility in the authority’s signal σu 0.52
Noise volatility in the Windward’s signal (true value) σv 0.10
Noise volatility in the Windward’s signal (Clean exporters’ ex-ante belief) σ̄v 8.28

Coefficient on information acquisition cost (×103) κ 2.30

Panel D: Imputed quantities (price in $ mln per trip)

Period E(pH) E(pL) E(pRB) E(pRG) VB VG

Pre-Windward 2.85 2.99 4.76 9.60 43.90 61.14
Post-Windward 2.59 2.91 4.60 9.74 40.48 59.08
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quantities generated by the model.

3.3 Model implications

Figure 4: This figure presents the predictions from the calibrated model from Section 3. We solve the
model by discretizing the aggregate shock ϵ̃ on a grid. We plot the average model outcomes for the values
of ϵ̃ as functions of pseudo-R

2
, which is backed out from the classification precision ρ in the model. In each

subplot, two vertical dashed lines indicate the pre- and post-Windward precisions, which correspond to 18%
and 42% pseudo-R

2
of predicting Bad tankers (or 4.3% and 15.4% pseudo-R

2
of predicting to-be-sanctioned

tankers), respectively.

In Figure 4, we present the model implications of the Refinitiv disclosure by varying the

precision of Windward’s signal, σ
−2
v . We focus on the pre-period equilibrium where almost

no Clean exporters buy Windward’s signal – which we model as Windward’s signal precision
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being zero before disclosure – and the post-period where everyone has access for free. The

two vertical dashed lines indicate these two equilibria, respectively.

To better interpret the disclosure effect, we quantify how the disclosure changes Clean

exporters’ detection accuracy, measured by the pseudo-R
2
for predicting Bad tankers. Our

model can provide this calculation for two reasons. First, we can empirically estimate the

pseudo-R
2
for predicting which tankers will be sanctioned – 4.3% in the pre-period and

15.4% in the post-period, as used in moments matching – which in our framework is jointly

determined by Clean exporters’ detection accuracy and the authority’s signal precision. Sec-

ond, under our information structure – where the public signal s
C,com

is independent of the

authority’s signal s
A
, and Windward’s signal s

W
is a noisy version of s

A
– our model can

identify Clean exporters’ detection accuracy separately from the authority’s signal precision.

The assumed independence between s
A
and s

C,com
is consistent with the authority’s encour-

agement of market participants’ own due diligence, and the correlation between s
A
and s

W

is supported by Reuters (Mar. 2016), and Wired (Mar. 2020). The pseudo-R
2
formula is in

Internet Appendix F. Our calibration indicates that the disclosure raises Clean exporters’

pseudo-R
2
for predicting Bad tankers from 18% to 42%.

Panel A of Figure 4 illustrates tankers’ expectations about the authority’s resource allo-

cation. First, because the authority allocates resources based on a noisy signal about tanker

types, Bad tankers rationally anticipate that they tend to face more monitoring than Good

tankers, for each risk label. Second, as the precision of Windward’s signal improves, High-risk

(Low-risk) tankers expect that they will face more (less) monitoring. This is because in the

post-period, risk labels are derived based on Windward’s signal, which contains information

about the authority’s signal. Therefore, with higher precision of Windward’s signal tankers

can learn more about the authority’s resource allocation from risk labels. This learning is

driving the disclosure effect on route changes.

Panel B shows that as Windward’s precision improves, Rogue exporters pay slightly

higher freight rates to hire Good tankers (i.e., E[pRG] increases) and lower rates for Bad

tankers (i.e., E[pRB] decreases). This is because, with better information, Clean exporters

are more likely to detect Bad tankers, and hence the bargaining power of these tankers

relative to Rogue exporters decreases, leading to lower freight rates. Knowing that, Good

tankers require higher compensation from Rogue exporters for dealing with them and thus

turning into Bad tankers thereafter.

Panel C shows the probabilities of tankers engaging in transactions with Rogue exporters.

High-risk tankers are less likely to engage with Rogue exporters. Importantly, as Windward’s

precision improves, the likelihood of engaging with Rogue exporters declines more sharply for

High-risk tankers, as those tankers learn from their risk labels that the sanctioning authority
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now allocates more monitoring resources to them. These results align with our empirical

findings on route changes.

Panel D sheds light on the aggregate implications for Rogue exporters. The black line

shows that the per-tanker spending of Rogue exporters increases, which is due mostly to the

increase in the freight rates paid by Rogue exporters to Good tankers (from Panel B in the

figure). This increase is not offset by the drop in freight rates that these exporters pay to

Bad tankers because there are many more Good tankers than Bad tankers.

The blue line in Panel D shows that as Windward’s precision improves, the total number

of oil tankers engaging with Rogue exporters decreases, consistent with Panel C. Quanti-

tatively, the information shock accounts for a 7.7% drop in Rogue exporters’ total hiring

of tankers. This shortfall, of course, can translate into a drop in exports of sanctioned oil

itself, but the magnitude of that drop may not be one-for-one. This is because some of these

tankers can be replaced by other means, e.g., through oil pipelines – although this likely

involves higher costs of transportation (if the costs were lower, then Rogue exporters would

have used these means rather than tankers in the pre-period).

Panel E in the figure shows the relation between Windward’s precision and the equi-

librium freight rates (i.e., the fixtures E[pL] and E[pH]) from Clean exporters. First, as

precision increases, High-risk tankers’ freight rates sharply decrease. This is because with

higher precision the H label indicates a higher probability of a Bad tanker, so Clean exporters

require a larger discount for hiring such a tanker.

Additionally, Panel E reveals a counterintuitive result: as precision increases, Low-risk

tankers’ freight rates also decrease. This outcome arises from two opposing forces, which we

derive from the first-order conditions of exporters’ optimization. The first is an information

effect: with improved precision, the L label more desirable as it indicates lower sanction

risk. The second is a competition effect: as precision increases, High-risk tankers that are

increasingly excluded from the Rogue exporters’ market now relocate to the Clean market,

intensifying competition and putting downward pressure on freight rates for Low-risk tankers.

Our quantitative analysis indicates that the competition effect outweighs the information

effect, resulting in a net decline in freight rates for Low-risk tankers. In the following section,

we empirically test this counterintuitive prediction using a shift-share design.

Panel F in the figure shows that as Windward’s precision improves, Clean exporters have

lower incentive to acquire private information. Our quantitative analysis here shows that as

Windward’s precision increases, Clean exporters quickly switch their information source to

Windward’s signal. The substitution occurs because of the decreasing marginal benefits of

information for Clean exporters. Intuitively, this follows from the fact that the generation

of private information for violator detection is expensive in the data; and the fact that when
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Windward discloses its list, the market responds substantially – implying that the Clean

exporters’ private signal had not managed to generate Windward’s information on its own.

This suggests a high cost-to-accuracy ratio of the private signal; so, as long as Windward

detection information is at least somewhat precise, Clean exporters stop generating their

signal.

This intuition supports the view that providing better public information crowds out

efforts to gather useful private information – which the sanctioning authority might itself

lack.
12

However, given that this private information had a high cost-to-accuracy ratio, the

disclosure of Windward’s more accurate signal improves enforcement overall (Section 3.3

contains further details).

Finally, in Table 4, we estimate the aggregate (annual) effect of the information shock

on the four relevant parties in terms of dollar values. We analyze the changes in earnings

for exporters and tankers between the pre- and post-Windward periods. We find that the

shipping cost for Rogue exporters increases by 1.2% (from 9.26 to 9.37 mln per tanker-trip)

due to the increase in p
R
G, while the cost for Clean exporters decreases by 3.5% (from 2.98 to

2.87 mln per tanker-trip) due to reductions in both pL and pH . On the tanker side, fixture

income decreases by 5.5% for Bad tankers (from 3.05 to 2.88 mln per tanker-trip) and by

2.0% for Good tankers (from 3.66 to 3.58 mln per tanker-trip). To estimate the aggregate

annual effect, we do the following back-of-the-envelope calculation: we multiply the above

dollar values by the number of tankers and 3 trips per year (from the data). Therefore, the

disclosure leads to $1.1 bln annual losses for Rogue exporters and Bad tankers, and $1.9 bln

overall gain for Clean exporters and Good tankers.

3.4 Counterfactual analysis: Increasing penalties under noisy de-

tection

Finally, to further explore implications for enforcement design, we use our model to study

a key counterfactual: what would happen if the sanctioning authority increased the penalty

(z) on Clean exporters who were found to be using sanctions-violating tankers.
13

This

scenario aligns with much of the focus in political and media discussions, as well as literature

suggesting that aligning the incentives of all parties with that of the sanctioning authority

should enhance enforcement.

12
Consider, for example, a company asked to deliver satellite surveillance equipment to the address of a

pizza shop; the firm should reasonably suspect foul play (see Huneke (2023) for further examples) and flag
that counter-party; this is something that the authority cannot do.

13
Recall that for Rogue exporters, we already assumed that the sanctioning authority impounds the entire

oil cargo – i.e., the penalty z
R
cannot be increased any further. Hence we focus on Clean exporters here.
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Table 4: Model-implied overall effects
This table reports the aggregate annual effect on earnings for the four relevant parties – Rogue exporters,
Clean exporters, Bad tankers, and Good tankers (in mln dollars). We estimate by multiplying per-tanker-
trip earnings by the number of tankers and 3 trips per year (the average number of trips per tanker from
our fixtures data).

Sanctions violators Sanctions-compliant agents

R exporters
(price paid)

Bad tankers
(price received)

C exporters
(price paid)

Good tankers
(price received)

Pre-Windward (per tanker-trip) 9.26 3.05 2.98 3.66
Post-Windward (per tanker-trip) 9.37 2.88 2.87 3.58
Percentage change 1.2% -5.5% -3.5% -2.0%

Aggregate effect (annual, $ mln)
(-/+ indicates loss/gain)

-562 -510 4,299 -2,443

Total (annual, $ mln)
(-/+ indicates loss/gain)

-1,072 1,855

In Figure 5, we conduct this analysis by varying z from 0.258 (4 mln dollars) to 0.516

(8 mln dollars) and fixing detection precision at the pre-Windward level. We focus on the

effect of the value redirected away from violators, as calculated in Table 4.

The figure reveals that increasing sanction penalties in the presence of noisy detection

has little effect on enforcement. This is due to two reasons: first, as Clean exporters cannot

perfectly observe tanker compliance status, increasing penalties raises the expected cost of

inadvertently hiring a violating tanker. In response, Clean exporters reduce their overall

demand for tanker services to manage this risk. This hurts both Good and Bad tankers.

Of course, Bad tankers are hurt more, as Clean exporters start especially avoiding high-risk

labeled ones that are more likely to be Bad. However, this shrinkage in demand from the

compliant sector increases tanker supply and lowers cost for Rogue exporters, making the

total value transferred away from violators in response to higher penalties negligible.

3.5 Empirically testing the counter-intuitive model implication

In this final section, we test the main counter-intuitive model implication that after the

disclosure, low-risk tankers receive lower fixtures from Clean exporters due to increased

competition in that market (as shown in Panel E of Figure 4). We conduct tests exploiting

charterer-level variations.

Ideally, we would want to measure the incremental tanker supply to each charterer af-

ter the information shock, but this quantity is unobservable. We circumvent this issue in

designing our test by relying on the intuition of “shift-share instruments” (Bartik, 1991).
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Figure 5: This figure presents the counterfactual analysis of increasing the sanction penalty. The x-axis is
the sanction penalty for Clean exporters (i.e., parameter z) expressed in million dollars. The y-axis is the
model-implied effects of the value redirected away from violators, as calculated in Table 4. For comparison,
we plot the effect from the information shock using a dotted line.

Let gk, for k ∈ 1, . . . , K, be the varying exposures to increased competition (i.e., “shifts”)

of K groups of tankers. Let also sik be the proportion (i.e., “share”) of group k tankers

that charterer i deals with (∑k sik = 1). Then the share-weighted sum of exposures ∑k sikgk

serves as an ex-ante measure of charterer-level competition.
14

To ensure variation in the exposures gk, we group tankers by product type – i.e., re-

fined products (e.g., gasoline and diesel), unrefined (e.g. crude oil), and unclassified prod-

ucts, hence K = 3. Among the refined-product tankers in Windward’s list, 24% are

high/moderate-risk tankers, while this proportion is 36% for unrefined, and 34% for un-

classified products tankers. This variation suggests that charterers with more unrefined or

unclassified products are more likely to experience increased supply from risky tankers after

the disclosure. Note that this strategy nets out other common/aggregate changes in fixtures

by exploiting charterer-level variation in exposures to supply shocks.

Using this measure, we focus on low-risk tankers and run the following regression:

fixturec,i,k,t = β0 × I{High-competition} + β1 × I{High-competition} × I{t≥0} + FE + ϵc,i,k,t. (31)

The dependent variable is low-risk tankers’ fixtures, and I{High-competition} equals one if the

charterer-level shift-share competition measure exceeds a cross-sectional cutoff (e.g., top

50%, 40%, or 30%), and is zero otherwise. Our model predicts a negative DiD coefficient β1.

14
For this measure to work, one would need stickiness in the charterer-tanker relationship. We verify this

in the data – 40% of the tankers engage with charterers that they have worked with in the preceding two
years.
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Table 5: Testing the counter-intuitive model implication: Competition spillovers

We test the model’s implication that the disclosure reduces low-risk tankers’ freight rates (competition ef-
fects), exploiting charterer-level variation in a DiD framework. Since tankers carrying unrefined and unclas-
sified products are more likely to be classified as risky by Windward, the charterers with a larger proportion
of such tankers are expected to face relatively higher supply of low-risk tankers after the disclosure, leading to
higher competition among these tankers and lower freight rates received by them. The dependent variable is
low-risk tankers’ fixtures. The explanatory variables are the high-competition indicator I{High-competition} and
its interaction with the post-period indicator. I{High-competition} equals one if the charterer-level shift-share
competition measure, as described in Section 3.5, exceeds certain cross-sectional cutoff (top 50, 40, or 30%),
and zero otherwise. The standard errors are double clustered at the tanker and time×tanker-type levels. *,
**, *** denote significance at the 10%, 5%, and 1% level, respectively.

Dependent variable: Low-risk tankers’ fixtures

Cutoff = top 50% Cutoff = top 40% Cutoff = top 30%

I{High-competition} × I{t≥0} -12.893** -14.304** -15.866**
[-2.15] [-2.48] [-2.62]

Obs. (tanker-month) 4,999 4,999 4,999

Time × Tanker Type FE Yes Yes Yes
Tanker FE Yes Yes Yes

Estimation results in Table 5 are consistent with model predictions: higher competition

corresponds to lower freight rates for low-risk tankers after the disclosure. The results are

robust across various cutoffs for the high-competition indicator, with estimated effects rang-

ing from 12.9 to 15.9 WS units. These results not only provide an out-of-sample test for our

model, but suggest that policymakers should be mindful of negative spillovers on compliant

parties in equilibrium.

4 Conclusion

This paper shows that enforcement failures primarily stem from third parties’ inability to

reliably identify violators, rather than from weak compliance incentives. We make three

contributions.

First, we empirically show that better information on violators alone can improve enforce-

ment outcomes. When a sanctions-risk list from the maritime analytics firm Windward.ai

became public on Refinitiv Eikon, suspect tankers experienced sharp earnings declines and

started avoiding sanctioned countries.

Second, we develop a dynamic structural model to quantify the market-wide consequences

of improved detection. The model implies that $1.4 billion annually was redirected away from
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violators. Compliant exporters benefited, but — counterintuitively — compliant tankers saw

lower earnings.

Third, we use the model to explain why, despite these large impacts, markets persistently

undervalue information from vendors like Windward. The mechanism is a feedback loop

between beliefs about detection accuracy and firm valuation.

These insights carry meaningful implications for policy design. If the core constraint

on enforcement is information rather than incentives, then simply increasing penalties or

tightening regulations will yield limited gains, as our model shows. Instead, improving

detection capabilities may be the most effective path toward strengthening the enforcement

of market-based sanctions.
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A Do financial institutions care about sanctions risk:

Evidence from an LLM

We focus on the top 50 U.S. financial firms (measured by total assets) from Compustat with

a GICS sector code of 40. We download their 10-K reports from SEC websites for 2015-

2023. We select paragraphs mentioning “sanction” for textual analysis using GPT-4, where

we input the paragraphs and ask:

Question: Does the following paragraph mention economic sanction, for example, enforced

by OFAC, and the economic-sanctions-related risk, cost, uncertainty to their business? Out-

put Yes or No, and give a brief reason.

Here are two examples of responses from GPT-4:

Input: for example, the current tensions between the United States and Russia due to the

Russian invasion of Ukraine that began in February 2022 and the resulting actions by the

United States and a number of other countries in response (including economic sanctions

imposed on Russia and the provision of military supplies to Ukraine) could result in retalia-

tory cyber attacks by Russian threat actors on our business or on third parties with which

we do business that have a material impact on our business.

Response: Yes, the paragraph mentions economic sanctions imposed on Russia and the

resulting potential risks, costs, and uncertainties to the business due to possible retaliatory

cyber attacks.
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Input: governmental regulatory authorities may institute administrative or judicial pro-

ceedings that may result in censure, fines, the issuance of cease-and-desist orders, trading

prohibitions, the suspension or expulsion of a broker-dealer or member, its officers, registered

representatives or employees or other similar sanctions.

Response: No, the paragraph does not mention economic sanctions, specifically enforced

by OFAC, or the related risk, cost, and uncertainty to their business. It only discusses

possible outcomes of administrative or judicial proceedings that can be brought against a

broker-dealer or member.

As the examples show, although both inputs mention “sanction,” GPT-4 can determine

whether it’s relevant to our focus. Next, we ask GPT-4 to generate possible reasons for

sanctions compliance risk.

Question: Please list potential reasons why a firm thinks sanctions compliance is challeng-

ing.

Using the 10 reasons provided by GPT-4, we then input the previously identified economic-

sanction-related paragraphs for each report and ask the following question:

Question: Read the provided firm annual report and mark the reasons from the following

list why this firm thinks sanctions compliance is challenging.

1. Complex regulations

2. Frequent updates

3. Multiple jurisdictions

4. Identifying sanctions violators

5. Internal communication

6. Staff training

7. Screening technology

8. Risk assessment

9. Record keeping

10. Enforcement penalties

Give your answer ONLY in a sequence of reason IDs separated by a comma, for example, if

your answer is the first 5 reasons, output 1,2,3,4,5

Based on GPT-4’s responses, we calculate the percentage of firms related to each reason and

report the five most important reasons in Figure 1.
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B Construction of predictors

B.1 AIS-based predictors

The detailed descriptions for the construction of AIS-based predictors are listed below:

• Identity Change: the indicator equals one if a tanker has changed its MMSI number

or flag in the preceding six months, as reported in AIS, and zero otherwise. Windward

(2022) has listed identity change as one of “the tried and true techniques of deceptive

shipping practices”.

• Risky Flag: the indicator equals one if a tanker’s flag is among the top 10 that have

been associated with moving Iranian and Venezuelan oil (Lloyd’s List (2021)). These

are the flags of Panama, Cameroon, Vietnam, Djibouti, Cook Islands, Tanzania, Togo,

Palau, Russia, and Belize.

• Ship-to-ship Transfer (STS): we construct two types of predictors. The first equals one

when the AIS navigation status is recorded as “At Anchor” or “Moored” at locations

that are at least x km away from the nearest port, and zero otherwise. We set x to be 10

or 20 (i.e., two versions of this predictor). We obtain port coordinates from the World

Port Index (WPI) published by the Maritime Safety Information and supplement this

list with estimated ports via a data-driven clustering method, DBSCAN, to reflect

ports that are newly built or have been omitted in the WPI. The second equals one

when the draft (i.e., the vertical distance between the waterline and the bottom of

the hull, which indicates how much cargo the tanker carries) changes by more than

one meter while the tanker is at least x km away from the nearest port. We again

set x to be 10 or 20 (i.e., two versions of this predictor). We include these predictors

as OFAC has listed STS as one of seven deceptive shipping practices to be vigilant

against (OFAC (2020)).

• Irregular Trajectory: we define a trajectory as irregular if a tanker’s total changes of

course within a day are abnormally high. A course is calculated from two adjacent AIS

signals, ranging from 0° to 360°, with 0°, 90°, 180°, 270° denoting north, east, south,

and west, respectively. A course change is the difference between two adjacent courses,

ranging from -180° to 180°. We sum all absolute values of the course changes in a day.

To filter out small-scale movements, we calculate the course when the distance between

two signals is above a threshold. If the distance doesn’t exceed the threshold, we move

to the following signals until the requirement is satisfied. We set the distance cutoff

to be 1, 2, or 5 km (i.e., three versions). The indicator we use equals one when the
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total course changes of a given tanker in a day are above the 95th percentile of the

distribution of all such changes within the respective month. We include this predictor

following OFAC suggestions (OFAC (2020))

• DBSCAN Outlier: this is a measure aiming to capture anomalous locations conditional

on speed and course as identified by DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) – a data-driven clustering method that has been employed

to detect marine anomalies in a shipping context (e.g., Pallotta et al. (2013)). We

first sort the data points into several groups based on speed and course, and then

perform DBSCAN within each group, i.e., we cluster conditional on speed and course.

The outliers that we find are also conditional, i.e., they deviate in certain ways from

tankers to which they are similar in other ways. The indicator in this case equals one if

a ship is identified as an outlier on a given day, whereby we set the distance parameter

of DBSCAN to be 10 or 20 km (i.e., two versions of the predictor).

• Dark Activity: equals one if the time gap between two signals is longer than T days.

We set T = 1, 2, 3 (i.e., three versions of this predictor). This predictor is motivated

by OFAC (2020) and Windward (2022).

B.2 Satellite-based predictors

Figure A-1 displays three images from the Sentinel-1 satellite as an example, with enlarge-

ments showing individual ships at sea. Dfy Graviti – a company specializing in aerospace

and maritime AI – helped us process these images to identify and locate ships. Their code

used for processing will be made available as part of our replication package. We construct

the following satellite-based predictors and provide detailed descriptions for constructing the

search area.

• Satellite Detection: We construct the predictors separately for detecting spoofing and

dark activity. For spoofing detection, the predictor equals one for day t if a tanker

is not seen in its corresponding search area during the period [t − r, t + r]. We set

r = 0, 1, 2 (i.e., three versions) recognizing that spoofing on a given day t may also

imply spoofing on adjacent days (e.g., r can be viewed as a smoothing parameter for

a time series). For dark activity detection, the predictor equals one if a tanker is not

seen in its corresponding search area during its dark period.

We define search areas on satellite images that should contain given tankers, under the null

hypothesis that the tankers are not violating sanctions. If a tanker is missing from its search

area, we infer that it was likely involved in sanctionable activity. To construct each search
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Figure A-1: This figure shows examples of satellite images. These three images were taken a
little after 2:30 a.m. on the 28th of January 2021 in the Persian Gulf area. Each image covers a
rectangular sector, 250 kilometers wide. The bottom insert on the extreme right shows eight ships
as little yellow objects at sea, while the top insert above it shows at the largest enlargement level
one of these ships, with individual pixels clearly seen.

area, we estimate its center and size using the two AIS signals closest to the satellite image

(just before and after). Using both signals helps narrow the search area.

For spoofing detection, we consider three cases: (I) A stationary tanker, where both

adjacent AIS signals are emitted roughly at the same location. Here, the search area is a

circle centered around this point. Because a tanker may follow a round-trip route, we only

flag a tanker as absent from the area when the time between signals is below a set threshold.

(II) A moving tanker with a signal near the satellite image time (within 15 minutes), where

the search area centers on this signal. (III) A moving tanker with only distant signals (e.g.,

a few hours), where we interpolate its trajectory by matching it to others passing through

the same area with a similar time span. For dark activity detection, we focus on the first

case, using the two adjacent signals just before and after a dark period.

More formally, for a given tanker (call it A) and a given satellite image at time tI , let t0

(t1) denote the time of the closest AIS signal just before (after) tI . Let xt0 and xt1 denote

tanker A’s locations as per the AIS signals at t0 and t1. For spoofing detection, we construct

search areas in the following three cases:

Case I: Both t0 and t1 are reasonably close to tI and the distance between xt0 and xt1

is small. We set the maximum time window to six hours and the maximum distance to five
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Raw data Interpolation

Figure A-2: This figure illustrates interpolation of tanker trajectories in an area seen by a satellite
at time tI . The tanker’s locations are recorded in AIS at time t0 < tI and t1 > tI , with no signals
in-between (we consider only cases when both of these times are within six hours of tI to limit
noise)). The black dots (x0) and (x1) denote the tanker’s locations at t0 and t1. We determine
the area to be searched in the satellite image by interpolating trajectories (shown by grey lines)
of comparable tankers that passed near these points in similar time frames and directions. Then
we find the locations (shown as blue dots) of these comparable tankers at tI . We define the search
area as the smallest ellipse containing all blue dots with 95% probability.

kilometers. The search area is defined as a circle centered at the midpoint between xt0 and

xt1 with a diameter equal to max(|xt0 − xt1 |, 0.5) km.

Case II: One of t0 or t1 is over six hours from tI , but the other is within 15 minutes. We

define the search area as a circle centered on the closer signal’s location. The radius assumes

the ship could travel at a maximum speed of 15 knots (28 km/h) between the signal and tI ,

with a minimum radius as in Case I.

Case III: Both t0 and t1 are again reasonably close to tI (within six hours), but the

distance between xt0 and xt1 is large. In this case, we define the search area based on a

data-driven interpolation method. The main idea is to interpolate the location of tanker A

using the trajectories of other tankers that have passed near both xt0 and xt1 , in the same

direction and over a similar time interval.

Figure A-2 illustrates Case III, where we match tanker A to comparable tankers by

location and average speed. We collect the location of each comparable tanker at its time

corresponding to tI for tanker A (the blue dots in the figure). We define the search area as

the smallest ellipse that contains all of these collected locations, except those that are more

than five standard deviations away from the center of the interpolation locations. We use

ellipses to reduce the size of the search area.

To be included in the matching, we require a tanker to have sent a signal within a five-

kilometer distance from xt0 , and then another one within a five-kilometer distance from xt1 ,

whereby the time it traveled between these two signals is within 30 minutes of the difference
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t1 − t0. To increase the number of matches, we search for comparable tankers in the three-

month period between December 2020 to February 2021. We also validate our method by

sequentially leaving out signals as an out-of-sample test and show that our interpolation

method yields a successful coverage for 96% of the test cases.

When detecting dark activity, Cases II and III are not applicable, since by design the

time interval between the adjacent AIS signals is larger than a few hours – we have defined

a dark period to be at least 24 hours long. Therefore, we only consider here Case I, but

modify it so that t0 is the last signal before a dark period, and t1 is the first signal after a

tanker emerges from the dark period.

Finally, note that alternative detection methods, such as identifying ships at port, are in-

feasible because satellite images of standard resolutions cannot distinguish between multiple

vessels of similar size and shape. Furthermore, sanctions violators sometimes have altered

their vessels’ appearance (IHS-ACSS, 2022).

B.3 Summary Statistics

Table A-1 presents summary statistics for variables used in the detection of Spoofing and

Dark Activity.

C Detecting sanctions violators

C.1 Predictive Models and their Performance

To detect spoofing, we create a tanker-day sample where the dependent variable is one if

a tanker is observed in Iran (per our ground truth dataset), but its AIS signals indicate

another location; it is zero otherwise. To detect dark activity, our dependent variable is one

if a tanker is observed in Iran during a dark period exceeding 24 hours, and zero otherwise.

To optimally combine predictors, we employ decision trees and neural networks with

10-fold cross-validation to fine-tune model parameters; the sample is randomly divided into

10 sub-samples, models are trained with nine sub-samples, leaving one for validation. This

procedure is repeated 10 times to select the best hyper-parameter combination based on

McFadden’s pseudo-R2. Detection performance is evaluated from the best cross-validated

model using its pseudo-R2.

Table A-2 presents our results. Panel A reveals that our best AIS-based detection models

achieve a pseudo-R2 of about 10% for detecting spoofing and dark activity. Incorporating

satellite data enhances detection only modestly, from 10% to 16%. Panel B evaluates the

incremental contribution of each predictor category. While overall pseudo-R2 values remain
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Table A-1: Summary statistics of detection samples

This table reports the summary statistics for the detection samples in Section 3. We separately detect
spoofing and dark activity. Panel A reports the sample sizes and Panel B reports the mean and standard
deviation of predictors. The construction of the predictors is described in Section 3.3. “-” in Panel B
indicates that the sample does not include the respective predictor.

Panel A: Sample Size

Spoofing Detection Dark Detection

No. observations 17,496 (tanker-day) 1,552 (dark periods)
No. unique tankers 1,481 746
No. unique violators 17 20

Panel B: Predictors

Spoofing Detection Dark Detection

Mean Std Mean Std

Identity Change 0.118 0.322 0.144 0.352
Risky Flag 0.263 0.440 0.288 0.453
Ship-to-ship Transfer
• anchor 10 km away from ports 0.218 0.413 0.363 0.481
• anchor 20 km away from ports 0.081 0.273 0.137 0.344
• draft change 10 km away from ports 0.036 0.186 0.151 0.358
• draft change 20 km away from ports 0.027 0.161 0.119 0.324
Irregular Trajectory
• distance cutoff = 1 km 0.050 0.218 0.053 0.225
• distance cutoff = 2 km 0.050 0.218 0.068 0.251
• distance cutoff = 5 km 0.050 0.218 0.079 0.269
DBSCAN Outlier
• distance parameter = 10 km 0.131 0.338 0.318 0.466
• distance parameter = 20 km 0.049 0.216 0.142 0.349
Dark Activity
• at least 2-day dark period - - 0.406 0.491
• at least 3-day dark period - - 0.244 0.429
Satellite Images
• 1-day window 0.010 0.101 - -
• 3-day window 0.028 0.165 - -
• 5-day window 0.042 0.200 - -
• during dark period - - 0.025 0.157

low, the Dark Activity and Ship-to-ship Transfer predictors are most important here, with

incremental pseudo-R2 of 9.4% and 6.2%, respectively.

Overall, we find that the detection of sanctions violators is challenging, even when com-

bining numerous predictors mentioned in industry and regulatory sources, and using so-

phisticated methods/models. It is possible that governments and certain corporations with

superior data access (e.g., Starlink) do not face these issues, but most third parties lack ac-

cess to such data; and yet they are still tasked with such detection to comply with sanctions
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Table A-2: Performance of ML detection models

In Panel A, this table shows detection accuracies for spoofing and dark activity, and their simple average
(“Total”), using either AIS data alone, or together with satellite data. In Panel B, ∆pseudo-R2 for a given
category is the difference between the pseudo-R2 of a full model and the same model that sets this particular
category to zero (note that all our predictors are zero-one indicators). Negative pseudo-R2 or ∆pseudo-R2

are treated here as zero. We report simple averages of the respective ∆pseudo-R2’s across the tree and
neural network models, and spoofing and dark detection. In Panel C, we report the total number of tankers
that violated Iranian sanctions during January 2021 (as per our proprietary dataset), the number of tankers
among them labeled as high/moderate risk in Windward’s list, and the number of tankers detected by our
ML models. Results are shown for different confidence levels (cl = 99%, 95%, and 90%).

Panel A: Model Performance

Model performance (pseudo-R2)

Detect Model Using only AIS data Using AIS and satellite data

Total Tree 9.1% 15.2%
NN 10.2% 16.3%

Spoofing Tree 6.7% 11.8%
NN 7.2% 13.8%

Dark Tree 11.5% 18.7%
NN 13.3% 18.8%

Panel B: Predictor Importance

Category ∆pseudo-R2

Satellite Detection 6.2%
Identity Change 3.7%
Risky Flag 2.8%
Irregular Trajectory 0.2%
Ship-to-ship Transfer 6.2%
DBSCAN Outlier 5.3%
Dark Activity 9.4%

Panel C: Comparison between the Windward’s list and ML-model detection

Total Violators: 33
on Windward’s list: 27

Number of violators detected

Detect Model Predictors cl = 99% cl = 95% cl = 90%

Total Tree Satellite + AIS 5 12 17
NN Satellite + AIS 5 13 15
Tree Only AIS 3 8 14
NN Only AIS 0 5 13

rules. It is also possible that our results reflect limitations in our ground truth dataset or

models, rather than a general difficulty in detection for third party market participants – in

Section C.2, we provide a discussion and further evidence on such detection being generally

challenging, even beyond our data or models.
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C.2 Is detection truly difficult?

One might question whether our results indicate a general difficulty in detection or merely

reflect limitations in our ground truth dataset or models.
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Figure A-3: The top-left (top-right) plot shows irregular trajectories for a sanctions-violating
tanker from our proprietary dataset (a sanctions-compliant tanker). The axes of these two plots
show degrees of latitude and longitude, and the red dots show the coordinates of each AIS signal
emitted by each tanker. The bottom plot shows the distribution of dark days in Jan 2021 for
tankers entering the Persian Gulf, conditional on the tanker going dark for at least half a day. The
x-axis shows bins of dark time: bin 0 is from 12 hours to 24 hours; bin x (x = 1, 2, · · · , 14) is
from x to x + 1 days; bin 15 is equal or greater than 15 days. The blue (orange) line represents
sanctions-compliant (sanctions-violating) tankers.

First, a closer examination of our data reveals that sanctions-evading predictors exhibit

similar patterns for both violating and compliant tankers. For example, as shown in Figure

A-3, compliant tankers (top-right) can show irregular trajectories similar to those of viola-

tors (top-left), and the dark time distributions for both tanker types overlap significantly.

Legitimate factors like weather, mechanical issues, or AIS data errors (Weng et al. (2022))
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contribute to this low signal-to-noise ratio, compounded by sparse satellite data.

Second, evidence of detection challenges abounds, even beyond our data and methods.

For instance, only 10 of the 33 tankers from our Iran-sanctions violators dataset appear on

UANI’s “The Ghost Armada” list, as of August 2023, illustrating the broader difficulty in

identifying violators.

Overall, detecting sanctions-violating tankers is challenging for third party market partic-

ipants. While governments and certain corporations with superior data access (e.g., Starlink)

may not face these issues, most third parties lack access to such data but are still required

to comply.

D The Refinitiv Disclosure

D.1 Windward’s sanction risk data

Figure A-4 shows a screenshot from Refinitiv Eikon illustrating Windward’s sanctions-risk

measures for one tanker (A STAR). We report the sample filtering process and the sample

size, i.e., the number of tankers, after each step, in Table A-3. Summary statistics on tankers

included in the Windward dataset are presented in Table A-4. This table also presents

balance tests on the matched sample of tankers.

Table A-3: Sample filtering

This table reports the sample filtering process and the sample size after each step, i.e., the number of tankers.

Data cleaning steps # tankers

Full tanker list from Reuters 13,997
Keep oil tankers 10,322
Keep large tankers (i.e., Medium, Panamax, Aframax, Suezmax, VLCC) 5,466
Drop tankers that were sanctioned before the disclosure 5,392
Drop tankers without AIS data (i.e., unable to calculate propensity score) 5,363

Reg. sample 1 (merge to fixture data) 3,628
Reg. sample 2 (merge to fixture data and require fixture type is WS) 2,852
Reg. sample 3 (merge to ownership data) 3,312
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Figure A-4: This figure shows a screenshot from Refinitiv Eikon illustrating Windward’s sanctions-
risk measures for one tanker (A STAR). The tanker is classified as high-risk with respect to the
Iranian sanctions, because Windward has found strong evidence that it has changed its ID and/or
has been involved in spoofing, and also has had long dark periods (transmission gaps) that can be
associated with suspicious activities. Windward has also found some (weaker) evidence that the
tanker was involved in ship-to-ship transfers.
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Table A-4: Summary statistics of Windward’s tankers sample

This table reports the summary statistics for the sample of tankers we use to examine the effects of the
disclosure event. Panel A reports sample sizes and tanker classification. Panel B reports the balance tests
on tanker characteristics between treated (i.e., high- and moderate-risk) and control (i.e., low-risk) groups.
To construct the control group, we conduct propensity score matching (PSM) for each treated tanker within
its tanker type, i.e., we require matched tanker(s) to have the same tanker type. The propensity score is
calculated by regressing the high/moderate-risk tanker indicator on pre-period tanker characteristics using
ML methods: average outputs from a decision tree and a neural network. The variables used to construct
the propensity score are the same as the list in Panel B. We calculate matching weights based on a Gaussian
kernel with a bandwidth of 0.05. The variable differences and corresponding t-value are reported. For this
tanker-level regression, standard errors are clustered at the flag level. Panel C reports sample averages of
freight rates (or fixtures).

Panel A: Tanker sample

No. unique tankers 5,363

Sanction risk

Tanker type Low Moderate High Total

Medium 1,579 423 306 2,308
Panamax 297 88 55 440
Aframax 533 295 280 1,108
Suezmax 309 179 167 655
VLCC 672 64 116 852

Total 3,390 1,049 924 5,363

Panel B: Tanker characteristics balance test

Treated
(High/Mod.-risk)

Control
(Low-risk)

Diff. t-value

Identity Change 0.169 0.165 0.003 [0.12]
Risky Flag 0.276 0.264 0.012 [0.24]
Ship-to-ship Transfer
• anchor 10 km away from ports 2.652 2.733 -0.082 [-1.61]
• anchor 20 km away from ports 1.424 1.475 -0.051 [-0.67]
• draft change 10 km away from ports 1.620 1.668 -0.048 [-1.63]
• draft change 20 km away from ports 1.297 1.334 -0.037 [-0.98]
Irregular Trajectory
• distance cutoff = 1 km 1.087 1.064 0.024 [0.40]
• distance cutoff = 2 km 1.426 1.414 0.012 [0.23]
• distance cutoff = 5 km 1.420 1.434 -0.014 [-0.27]
DBSCAN Outlier
• distance parameter = 10 km 3.744 3.670 0.075 [1.33]
• distance parameter = 20 km 3.023 2.946 0.077 [1.31]
Dark Activity
• at least 2-day dark period 0.883 0.872 0.010 [0.27]
• at least 3-day dark period 0.600 0.589 0.011 [0.31]

Panel C: Average fixture

Average fixture in July 2023 (one month before the event)

Full sample Low risk Moderate risk High risk

165.3 129.8 135.2 126.8
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D.2 Attention to Windward

Figure A-5 shows page views of the Windward.AI homepage. It increased dramatically right

after the list was put up on Reuters, suggesting that market participants likely paid attention

to this disclosure.

Figure A-5: This figure plots the number of unique visitors of the domain https://windward.ai/
(and its sub-domains), from July 2023 to November 2023. The data is extracted from Semrush, a
competitive analysis platform operated by Semrush Holdings, Inc. The shadowed area represents
the estimation deviation (i.e., the error band provided by the platform). The vertical dashed line
indicates the event month of the Refinitiv disclosure of high/moderate-risk tankers.

D.3 Optimal mix of public-data-based detection models andWind-

ward’s List

Figure A-6 compares the out-of-sample predictability of future sanctions achieved using

weighted averages of Windward’s and public-data-based predicted outcomes with various

weights.

E Estimating the effects of the Refinitiv disclosure

The key issue is that the untreated tankers, i.e., those classified as low-risk by Windward,

may not provide accurate counterfactuals for high/moderate-risk tankers. This is because the

low-risk tankers could be so different from the high/moderate-risk tankers that their fixtures
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Figure A-6: This figure compares the out-of-sample predictability of future sanctions achieved
using weighted averages of Windward’s and public-data-based predicted outcomes with various
weights. We plot the corresponding out-of-sample performance measures against the weight for
Windward’s list. Windward’s predicted outcome is a variable equal to one for high-risk tankers
and zero otherwise. For the public-data-based predicted outcome, we take the view of a third
party predicting future sanctioned tankers at the end of July 2023 (i.e., right before the Refinitiv
disclosure). For our training sample, the predictors are constructed from data from August 2022
till January 2023 and the dependent variable is a zero-one indicator of tankers sanctioned between
August 2022 and July 2023. The public data include AIS-based predictors and satellite-based
predictors. We take the average of the ML models (i.e., decision trees and neural networks). The
public-data-based predicted outcome is the estimated probability of a tanker being sanctioned after
July 2023. The out-of-sample evaluation does not include tankers that were already sanctioned at
the prediction time, i.e., the end of July 2023.

would have trended differently from those of the high/moderate-risk tankers even without

the disclosure. In that case, the conventional difference-in-differences (DiD) estimator would

be biased, because its key identification assumption – parallel trends for the treatment and

control – no longer holds.

We use two methods to address this issue. The first is propensity score matching (PSM),

introduced by Rosenbaum and Rubin (1983) to construct counterfactuals relying on the

strong ignorability assumption (“unconfoundedness”). PSM is an intuitive method and

makes it easy to visualize the data using standard DiD plots. Second, we follow Abadie (2005)

and employ a semiparametric DiD estimator. Abadie’s estimator only requires conditional

mean independence – that is, conditional on covariates, the expected value of the outcome

variable does not depend on treatment status.1 Moreover, PSM requires estimating matching

weights as a function of propensity scores, choosing the functional form. In contrast, Abadie

1See, e.g., Heckman et al. (1997) and Abadie (2005).
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(2005)’s method offers lower degrees of researcher freedom regarding specification choice.

Consider the following setup to fix ideas in our context. Let t = 0 (t = 1) denote

the pre-treatment period (post-treatment period), and X is a vector of tanker observed

characteristics. Let D = 1 (D = 0) indicate that the tanker is treated (untreated), i.e.,

it is classified as high/moderate risk (low-risk) in the Windward disclosure. Let Yt be the

tanker’s observed fixture at period t. Further, suppose Y T
1 |D = 1 is the fixture for a treated

tanker at t = 1, and Y T
1 |D = 0 is its counterfactual fixture – i.e., what its fixture would

have been at t = 1 had it not been treated. Similarly, Y U
1 |D = 0 denote the fixture for an

untreated tanker at t = 1, and Y U
1 |D = 1 denote its counterfactual fixture – i.e., what its

fixture would have been at t = 1 had it actually been treated. The quantity of interest is

the average treatment effect on the treated (ATT):

ATT = E
[
Y T
1 − Y U

1 |D = 1
]
, (A-1)

which is the difference between the fixture for a disclosed-as-high/moderate-risk tanker and

what its fixture would have been, had it not been disclosed as high/moderate risk. When

there is a need to indicate a particular tanker, e.g., tanker i, we add a subscript i to the

variables, e.g., Xi and Yi,t. In the cases without confusion, we drop the subscript of i for

simplicity.

E.1 Propensity score matching (PSM)

PSM addresses the challenge that the conventional DiD identification assumption

E
[
Y U
1 − Y0|D = 1

]
= E

[
Y U
1 − Y0|D = 0

]
, (A-2)

may not hold when the differences between the characteristics of treated and control tankers,

i.e., between X|D = 1 and X|D = 0, affect the dynamics of outcome variables. For every

treated tanker i, PSM tries to find tanker(s) j which have very similar characteristics Xj

to those of tanker i but were actually classified by Windward as low-risk; then it treats

such tanker(s) j as counterfactual. Rosenbaum and Rubin (1983) show that, under uncon-

foundedness (i.e., Y T
1 , Y U

1 ⊥⊥ D | X), it is sufficient to focus solely on tankers with similar

propensity p = Pr(D = 1|X) to have been labeled as high/moderate risk ex-ante. That is,

we can define ‘similar’ tankers relying only on dimensions of X that matter for risk labeling,

rather than considering matching on the full vector of characteristics X.

In our notation, PSM replaces [Y U
i,1 − Yi,0|Di = 1], i.e., the counterfactual fixture changes

of high/moderate-risk tanker i in the absence of treatment, with
∑

j:Dj=0w(j, i)(Yj,1 − Yj,0),

i.e., the weighted average of observed fixture changes of low-risk tanker(s) j that had a similar

ex-ante propensity to be labeled as high/moderate risk. w(j, i) is determined by comparing
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pi and pj (Rosenbaum and Rubin, 1983). specifically, we give a higher weight for a low-risk

tanker j if pj, the conditional probability of being labeled as high/moderate risk based on

Xj, is closer to that of the target tanker i. Once the weights w(j, i) of matching tankers are

obtained, ATT can be estimated as follows:

ˆATT =
1

N1

∑
i:Di=1

(Yi,1 − Yi,0)−
∑

j:Dj=0

ŵ(j, i)(Yj,1 − Yj,0)

 , (A-3)

where N1 is the total number of treated tankers and ŵ(j, i) is the estimated value of w(j, i).

ATT averages the differences between the fixture changes around the disclosure event for

treated tankers and for the matched untreated tankers.

E.2 Abadie’s (2005) semiparametric difference-in-differences

Abadie (2005) relies on the following identification assumption:

E
[
Y U
1 − Y0|X = x,D = 1

]
= E

[
Y U
1 − Y0|X = x,D = 0

]
. (A-4)

This conditional identification assumption is more suitable to our setting because it is

more plausible that conditional on the same tanker size, AIS emission pattern, trajecto-

ries, ownership structure, etc., the fixture of a disclosed high/moderate-risk tanker in the

absence of disclosure would follow parallel dynamics with that of a low-risk tanker having

the same value of all these characteristics in X. To proceed, Abadie (2005) shows that

ATT defined in equation (A-1) can be written as an integral along all dimensions of X:

E [...|D = 1] =
∫
E [...|X = x,D = 1] dP (X = x|D = 1). After substituting into the identi-

fication assumption in equation (A-4) and some algebraic manipulation, ATT equals to

ATT =
1

Pr(D = 1)
· E
[
D − p

1− p
· (Y1 − Y0)

]
, (A-5)

where p = Pr(D = 1|X), as defined before, is the propensity score. To gain some intuition,

we can partition the expectation in equation (A-5) based on D = 0 and D = 1, which gives

ATT = E [Y1 − Y0|D = 1]− E

[
p/Pr(D = 1)

(1− p)/(1− Pr(D = 1))
· (Y1 − Y0)|D = 0

]
. (A-6)

In equation (A-6), the first term is the average of changes of observed fixtures for risky

tankers, and the second term is a propensity-score-based-weighted average of changes of

observed fixtures for low-risk tankers. Under the perfect randomized treatment assignment,

p = Pr(D = 1|X) = Pr(D = 1) and the propensity-score-based weight is always one, which

returns back to the conventional DiD estimator. When p differs from Pr(D = 1), the method

will give higher (lower) weights to the low-risk tankers with higher (lower) p, i.e., those who

are closer (not close) to the high/moderate-risk tankers in terms of propensity scores.
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E.3 How are fixtures measured?

In shipping contracts, spot fixture rates are often quoted relative to “Worldscale” (WS),

i.e., a baseline rate calculated for a standardized vessel on a round-trip voyage between two

specified ports (or between ports in two specified areas). Such baseline rates are defined as

“WS100” and an actual quote can be given relative to the baseline – for example, “WS75”

or “WS200” would denote 75% of the baseline rate or double this rate for a charter between

the baseline ports. WS rates are revised annually based on updated bunker prices, port

costs, and exchange rates.2 The key advantage of the Worldscale is that it makes freight

rates across different contracts more comparable. About two thirds of the contracts in our

sample are in WS format, and we focus our analysis on WS rates.

E.4 Robustness checks

We consider the following robustness checks on our fixture changes estimation. First, we

use propensity scores from a logistic regression, rather than the baseline machine learning

models. Second, we drop the fixtures in August 2023 to allow about two weeks for the

disclosure effect to come into force. Third, we drop the fixtures with Russian ports, i.e.,

ports of Novorossiysk, St. Petersburg, Primorsk, Tuapse, and Taman in our data, to check

that our effects are not coming solely from Russia-related changes in maritime activity around

this time. Finally, we use bootstrap standard errors with 500 replications instead of clustered

standard errors. The results are shown in Table A-5.

E.5 Changes in charterers’ behavior

Did U.S. and U.S.-allied charterers start avoiding tankers classified as high or moderate

risk by Windward? We obtain charterers’ names from fixtures data and determine the

countries of their headquarters via LinkedIn or company websites. U.S.-allied charterers

include companies from the UK, European Union, Australia, New Zealand, or Japan. The

dependent variable is the number of tankers of a given risk type that each charterer employs

each month. The regression specification is

#tankersh,t =
[
βU × US chartererh + βA × US allied chartererh

]
× I{t≥0}

+αh + γt + ϵh,t, (A-7)

where h denotes a charterer.

Table A-6 presents the estimation results for Eq.(A-7). Similar to our previous results,

we find a significant drop in high-risk tankers usage by U.S. charterers, while effects for U.S.-

2See https://www.worldscale.co.uk/ for further details.
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Table A-5: Robustness checks

This table reports on robustness checks for the fixture changes estimation. The sample and construction of
propensity score are the same as in Table 3, except for the features indicated in the first row of the table.
In Panel A, PSM uses a Gaussian kernel with a bandwidth of 0.01. Standard errors are double-clustered at
the tanker and time×tanker-type levels (except for the last column). In Panel B, we manually subtract the
cross-sectional mean by tanker type to account for time×tanker-type fixed effects, since Abadie’s estimator
is derived without directly accounting for macro trends through time fixed effects. Standard errors are as
derived in Abadie (2005) (except for the last column). *, **, *** denote significance at the 10%, 5%, and
1% level, respectively.

Propensity score
from logistic reg.

Drop Aug 2023
Drop Russian

ports
Bootstrap s.e.

(500 replications)

Panel A: PSM-DiD

Dependent Variable: Fixtures

ATT for High Risk -10.516* -15.675** -10.999** -16.063***
[-1.70] [-2.51] [-2.08] [-3.54]

Obs. (tanker-month) 5,383 4,957 5,200 5,378
Time × Tanker Type FE Yes Yes Yes Yes
Tanker FE Yes Yes Yes Yes

Panel B: Abadie (2005) Semiparametric DiD

Dependent Variable: Fixtures demeaned by time × tanker type

ATT for High Risk -12.280*** -14.854*** -9.945** -13.749***
[-2.87] [-3.29] [-2.26] [-3.20]

Obs. (tanker) 1,089 976 1,037 1,036

allied charterers are not statistically significant. For perspective, the average U.S. charterer

employed 0.652 high-risk tankers in July 2023, and the estimated 0.358 drop represents a

54.9% reduction (0.358/0.652).

E.6 Selection into dataset

One question related to our estimated treatment effects could be whether there are potential

selection issues: the information shock may affect the high/moderate-risk tankers’ incentive

to report their fixture contracts to the data vendor, from which we source our numbers.

For example, if after the information becomes public, some high/moderate-risk tankers are

reluctant to disclose their contracts, there could be a concern that our estimation is biased

by the selection issues. We test this hypothesis by using as our dependent variable the count

of the number of fixture contracts per month for each tanker, using the same specification

as our fixture results. To enter into the sample, we require a tanker to report at least one

fixture record during our sample period.

If there are selection issues, we will observe that the number of fixture contracts for
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Table A-6: Difference-in-differences analysis of changes of charterers

In this table, we examine whether U.S. or U.S.-allied companies tend to stop chartering high/moderate-
risk tankers after the Refinitiv disclosure. U.S.-allied companies are those from the UK, European Union,
Australia, New Zealand, or Japan. The dependent variable is the number of tankers of a given risk type
that each charterer employs in a month. The sample period is from Feb 2023 to Mar 2024. The post-period
starts from Aug 2023. We regress the dependent variable on the indicators of U.S. and U.S.-allied charterers
interacted with the post-period indicator controlling for charterer fixed effects and time fixed effects. The
coefficients of the DiD estimation are reported. The standard errors are double clustered at the charterer
and time level. *, **, *** denote significance at the 10%, 5%, and 1% level, respectively.

Dependent Variable: No. tankers for each charterer-month

No. high-risk tankers No. mod.-risk tankers No. low-risk tankers

U.S. charterer × I{t≥0} -0.358* -0.131 0.065
[-1.91] [-0.67] [0.09]

U.S.-allied charterer × I{t≥0} 0.013 -0.030 0.136
[0.08] [-0.12] [0.31]

Obs. (charterer-month) 1,820 1,820 1,820
Time FE Yes Yes Yes
Charterer FE Yes Yes Yes

high/moderate-risk tankers significantly decreases if they want to avoid disclosing, after

Windward publishes their list. The results in Table A-7 show that all coefficients are both

statistically and economically insignificant for either of our two methods.

This suggests that the owners of high/moderate-risk tankers do not seem to change their

reporting of fixture contracts to the dataset, so such selection issues do not seem to be

important.
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Table A-7: Difference-in-differences analysis of sample selection

This table examines whether there are potential selection issues by estimating the average treatment effects
on the treated (ATT) on the number of fixture records for high/moderate-risk tankers after the Refinitiv
disclosure using PSM-DiD and Abadie (2005)’s semiparametric DiD. The dependent variable is the number
of fixture records for each tanker-month, and it is set to zero if there are no fixture records. We exclude the
tankers with all zero values of the dependent variable. The sample period is from Feb 2023 to Mar 2024. The
post-period starts from Aug 2023. The propensity score is calculated by regressing the high/moderate-risk
tanker indicator on pre-period tanker characteristics using ML methods. The variables used to construct the
propensity score are shown in Table A-1. In Panel A, we match tankers within each tanker type and calculate
weights based on propensity scores and a Gaussian kernel with a bandwidth of 0.01, 0.03, or 0.05. Then, we
do DiD estimation in the matched sample, controlling for tanker fixed effects and time×tanker-type fixed
effects. The standard errors in Panel A are double clustered at the tanker and time×tanker-type levels. In
Panel B, we implement Abadie’s method. The standard errors in Panel B are as derived in Abadie (2005).
*, **, *** denote significance at the 10%, 5%, and 1% level, respectively.

Panel A: PSM-DiD

Dependent variable: No. fixture records in each month

Bandwidth = 0.01 Bandwidth = 0.03 Bandwidth = 0.05

ATT for High Risk 0.020 0.013 0.011
[0.68] [0.48] [0.43]

Obs. (tanker-month) 37,338 37,338 37,338

ATT for Moderate Risk 0.009 0.002 0.002
[0.45] [0.11] [0.10]

Obs. (tanker-month) 41,776 41,776 41,776

Time × Tanker Type FE Yes Yes Yes
Tanker FE Yes Yes Yes

Panel B: Abadie (2005) Semiparametric DiD

Raw no. records
No. records demeaned

by time
No. records demeaned
by time × tanker type

ATT for High Risk 0.009 0.009 0.015
[0.45] [0.47] [0.78]

Obs. (tanker) 2,447 2,447 2,447

ATT for Moderate Risk -0.003 -0.003 0.000
[-0.18] [-0.19] [0.02]

Obs. (tanker) 2,984 2,984 2,984

F Details related to the model

F.1 Signals, risk labels, and rational expectations

A key component of our model is that tankers and Clean exporters form rational expectations

of the authority’s signal from risk labels. We calculate the learning process (i.e., E[a|G,L],

E[a|G,H], E[a|B,L], and E[a|B,H]) using the following lemma.
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Lemma 1 Suppose X and Y are two jointly normal random variables with X ∼ N (0, σ2
X)

and Y ∼ N (0, σ2
Y ), and their correlation is ρ. For a given threshold K, we have the following

conditional probability density functions (PDF):

fX|Y≤K(x) =
1√
2πσX

exp

(
− x2

2σ2
X

) Φ

(
K−ρ

σY
σX

x

σY

√
1−ρ2

)
Φ
(

K
σY

) ,

fX|Y >K(x) =
1√
2πσX

exp

(
− x2

2σ2
X

) Φ

(
ρ
σY
σX

x−K

σY

√
1−ρ2

)
Φ
(
− K

σY

) ,

where Φ(·) is the standard normal cumulative distribution function.

We assume the threshold K is set such that the number of High-risk tankers equals the

number of Bad tankers, λ. Let sC denote the Clean exporters’ optimally combined signal.

Then, E(sC ≥ K) = λ implies

(1− λ)Φ

(
K

σs

)
+ λΦ

(
K − 1

σs

)
= 1− λ,

where σs is the noise standard deviation in signal sC .

F.2 Solving the model

(1) Substituting w̄R
G and w̄R

B into Rogue exporters’ optimization problem gives

max
{pRG,pRB}

QR
GL(r̃

R − pRG − w̄GL1 · zR) +QR
GH(r̃

R − pRG − w̄GH1 · zR) +

QR
BL(r̃

R − pRB − w̄BL1 · zR) +QR
BH(r̃

R − pRB − w̄BH1 · zR)

Substituting market-clearing conditions into FOCs w.r.t. pRG and pRB:

(1− θG)(r̃
R − pRG − w̄GL1 · zR − cGL) + θG(r̃

R − pRG − w̄GH1 · zR − cGH) = 0

(1− θB)(r̃
R − pRB − w̄BL1 · zR − cBL) + θB(r̃

R − pRB − w̄BH1 · zR − cBH) = 0

(2) Substituting w̄C
L and w̄C

H into Clean exporters’ optimization problem gives

max
{pL,pH}

QGL(r̃ − pL − w̄GL0 · zC) +QGH(r̃ − pH − w̄GH0 · zC) +

QBL(r̃ − pL − w̄BL0 · zC) +QBH(r̃ − pH − w̄BH0 · zC)

Substituting market-clearing conditions into FOCs w.r.t. pL and pH and using the facts
λ(1−θB)

1−λ
= θG and (1−λ)θG

λ
= 1− θB:

(1− θG)(r̃ − pL − w̄GL0 · zC + cGL − c̄) + θG(r̃ − pL − w̄BL0 · zC + cBL − c̄) = 0

(1− θB)(r̃ − pH − w̄GL0 · zC + cGH − c̄) + θB(r̃ − pH − w̄BH0 · zC + cBH − c̄) = 0
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(3) Critical values for tanker decisions

cGL = pRG − pL − (w̄GL1 − w̄GL0)z − β(VG − VB)

cGH = pRG − pH − (w̄GH1 − w̄GH0)z − β(VG − VB)

cBL = pRB − pL − (w̄BL1 − w̄BL0)z

cBH = pRB − pH − (w̄BH1 − w̄BH0)z

(4) Tanker values

VG =
θGE

[
(cGH)2

2c̄
+ pH

]
+ (1− θG)E

[
(cGL)

2

2c̄
+ pL

]
− [θGwGH0 + (1− θG)wGL0]z

1− β
(A-8)

VB =
θBE

[
(cBH)2

2c̄
+ pH

]
+ (1− θB)E

[
(cBL)

2

2c̄
+ pL

]
− [θBwBH0 + (1− θB)wBL0]z

1− β
(A-9)

and tankers’ sanction penalty

z = βVB

(5) Market clearing conditions

QR
GL = (1− λ)(1− θG)

(cGL

c̄

)
QR

GH = (1− λ)θG

(cGH

c̄

)
QR

BL = λ(1− θB)
(cBL

c̄

)
QR

BH = λθB

(cBH

c̄

)

QGL = (1− λ)(1− θG)
(
1− cGL

c̄

)
QGH = (1− λ)θG

(
1− cGH

c̄

)
QBL = λ(1− θB)

(
1− cBL

c̄

)
QBH = λθB

(
1− cBH

c̄

)
(6) Clean exporters’ information acquisition

max
{σξ,χ∈{0,1}}

Π(σξ, χ; σ̃
2
v)− Ω(σξ)− χ · PW , (A-10)

with optimality conditions

∂Π(σξ, χ)

∂σξ

=
∂Ω(σξ)

∂σξ

, χ =


0, if Π(σξ, 1)− Π(σξ, 0) < PW ,

1, if Π(σξ, 1)− Π(σξ, 0) > PW ,

0 or 1, if Π(σξ, 1)− Π(σξ, 0) = PW .

(A-11)

There are 21 endogenous variables in the model: 4 prices (pL, pH , p
R
G, p

R
B), 4 critical values

(cGL, cGH , cBL, cBH), 8 quantities (QR
GL, Q

R
GH , Q

R
BL, Q

R
BH , QGL, QGH , QBL, QBH), 2 tanker

values (VG, VB), 1 sanction penalty z, and 2 variables about information acquisition (σξ, χ).

We solve the model in the following manner.

First, for a given set of (σξ, χ), we solve the model by iterating on tanker values, VG and

VB. The steps are as follows:

• Step 1: Discretize ϵ̃.
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• Step 2: Set initial values as V
(0)
G and V

(0)
B .

• Step 3: Given V
(k)
G and V

(k)
B from the k-th iteration, and for each discrete point of ϵ̃,

solve for the remaining endogenous variables (including 4 prices, 4 critical values, 8

quantities, and 1 sanction penalty) in a linear system, as those equations are linear.

• Step 4: Calculate V
(k+1,raw)
G and V

(k+1,raw)
B by substituting the values of the endogenous

variables in Step 3 into Eq.(A-8) and (A-9). Update the tanker values:

V
(k+1)
G = ϕV

(k+1,raw)
G + (1− ϕ)V

(k)
G , V

(k+1)
B = ϕV

(k+1,raw)
B + (1− ϕ)V

(k)
B ,

where ϕ is the learning rate.

• Step 5: Repeat Step 3 and 4 until convergence. The stopping condition is given by

|V (k+1,raw)
G − V

(k)
G |+ |V (k+1,raw)

B − V
(k)
B | < η,

where η is the tolerance.

We discretize ϵ̃ on a grid of 101 points. We set the learning rate ϕ to 0.5 and tolerance η

to 10−7. The convergence of the above value iteration is ensured by the contraction mapping

theorem. Our results are robust to different discretization parameters and learning rates.

Then, we deal with the Clean exporters’ information-acquisition decision, σξ and χ. In

the pre-period equilibrium, the price of Windward’s information, PW , is determined such

that Clean exporters are indifferent between buying information (χ = 1) and not buying

it (χ = 0). Empirically, few Clean exporters purchased Windward’s information in the

pre-period. Accordingly, we approximate the pre-period equilibrium by χ = 0. In the post-

period, public disclosure sets PW = 0 and induces χ = 1. Given the choice of χ, we solve

the optimal choice of σξ by maximizing the Clean exporter’s objective in Eq.(A-10).

F.3 Details about calibrating σ̃v

The system to solve is given by

xi = δ + ηi, (A-12)

δ̃i = E[δ|xi,M
W ], (A-13)

MW =
N∑
i=1

δ̃i + ϵW . (A-14)

We conjecture the following linear solution:

δ̃i = µδ + A(xi − µδ) +B

(
MW

N
− µδ

)
, (A-15)
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where A and B are parameters to solve. Substituting Eq.(A-15) into Eq.(A-14) gives

MW

N
= µδ +

A

1−B

[
(δ + η̄ − µδ) +

ϵW

AN

]
, (A-16)

where η̄ = 1
N

∑N
i=1 ηi. Define

X = (δ + η̄ − µδ) +
ϵW

AN
. (A-17)

Note that X is a sufficient statistic of MW . Therefore, we have E[δ|xi,M
W ] = E[δ|xi, X].

Applying the projection theorem for normal random variables gives

δ̃i = µδ +
[
Cov(xi, δ) Cov(X, δ)

] [ Var(xi) Cov(xi, X)

Cov(xi, X) Var(X)

]−1 [
xi − µδ

X

]

= µδ +
[
Σδ Σδ

] [ Σδ + Ση Σδ +
Ση

N

Σδ +
Ση

N
Σδ +

Ση

N
+ Σϵ

A2N2

]−1 [
xi − µδ

X

]

= µδ +
1

A2N2ΣϵΣδ(xi − µδ) +
N−1
N

ΣηΣδX

(Σδ + Ση)
(
Σδ +

Ση

N
+ Σϵ

A2N2

)
−
(
Σδ +

Ση

N

)2 . (A-18)

On the other hand, combining Eq.(A-15) and Eq.(A-17) gives

δ̃i = µδ + A(xi − µδ) +
AB

1−B
X. (A-19)

Comparing coefficients in Eq.(A-18) and Eq.(A-19) yields

Ση

Σϵ

(N − 1)

(
N +

Ση

Σδ

)
A3 + A− 1 = 0, (A-20)

B

1−B
= N(N − 1)

Ση

Σϵ

A2. (A-21)

Finally, we prove that when Σδ/Ση → c > 0 and Σϵ/Ση → 0, we have A → 0 and B → 1.

Note that Eq.(A-20) implies that

0 < A <

(
Σϵ

Ση

) 1
3

(N − 1)−
1
3N− 1

3 . (A-22)

Therefore, when Σϵ/Ση → 0, we have A → 0. Note that Eq.(A-20) and Eq.(A-21) imply

B

1−B
= N(N − 1)

Ση

Σϵ

A2 =
A−1 − 1

1 + 1
N

Ση

Σδ

. (A-23)

Therefore, when A → 0 and 1 + 1
N

Ση

Σδ
→ 1 + 1

Nc̄
, we have B

1−B
→ ∞ and B → 1.

F.4 Upper bound of the valuation of Windward’s signal

Let Msignal and Mother denote the market values of Windward’s signal and its other busi-

nesses, respectively. Let superscripts 0 and 1 refer to the pre- and post-periods, respectively.
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Thus, M0
signal is the pre-period value of Windward’s signal. The data imply

M0
signal +M0

other = $42m.

Also, Windward’s market value increases in the post-period

M1
signal +M1

other ≥ M0
signal +M0

other.

Public disclosure eliminates the proprietary value of the signal

M1
signal = 0.

Assume the post-period spillover to other businesses (i.e., the market updates M0
signal to

M1
signal also based on the signal precision) is bounded by b:

M1
other

M0
other

≤ b.

Therefore, we have

M0
signal =

(
1− M0

other

M0
signal +M0

other

)
× $42m ≤

(
1− M0

other

M1
signal +M1

other

)
× $42m

=

(
1− M0

other

M1
other

)
× $42m ≤

(
1− 1

b

)
× $42m

If b is tied to the change in signal precision—from 7.5% pre to 21.3% post—then b = 2.84,

yielding

M0
signal ≤ $27m.

F.5 Model analogs

• First, the number of sanctioned tankers in the model is

QSanc =
∑

ij∈{GL,GH,BL,BH}

(
Qijw̄ij0 +QR

ijw̄ij1

)
. (A-24)

Since we normalize the total number of tankers to one, QSanc is also the proportion of

sanctioned tankers.

• Second, the volatilities of low-risk and high-risk tankers’ fixtures are std(pL) and std(pH),

respectively.

• Third, we derive the model-implied pseudo-R2 for predicting to-be-sanctioned tankers.

Generally, let y = 0, 1 denote the true label and ŷ = 0, 1 denote the prediction. Pseudo-R2

is a function of three elements: proportion of sanctioned tankers p̄ = E[y]; false positive

rate α = E[ŷ|y = 0]; and true positive rate β = E[ŷ|y = 1]. Define p̂ = E[y|ŷ], which gives
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p̂0 = E[y|ŷ = 0] = p̄(1−β)
(1−p̄)(1−α)+p̄(1−β)

and p̂1 = E[y|ŷ = 1] = p̄β
(1−p̄)α+p̄β

. Pseudo-R2 equals

pseudo-R2 (A-25)

= 1− E[ylog(p̂) + (1− y)log(1− p̂)]

E[ylog(p̄) + (1− y)log(1− p̄)]

= 1− p̄(1− β)log(p̂0) + p̄βlog(p̂1) + (1− p̄)(1− α)log(1− p̂0) + (1− p̄)αlog(1− p̂1)

p̄log(p̄) + (1− p̄)log(1− p̄)
.

When y = 1 (y = 0) indicates a tanker being sanctioned (not being sanctioned), and

ŷ = 1 (ŷ = 0) indicates a tanker labeled as high-risk (low-risk), we have the following

classification:

Low-risk (ŷ = 0) High-risk (ŷ = 1)

Non-sanctioned (y = 0) (1− w̄BL) ·BL+(1− w̄GL) ·GL (1−w̄BH) ·BH+(1−w̄GH) ·GH

Sanctioned (y = 1) w̄BL · BL + w̄GL ·GL w̄BH · BH+ w̄GH ·GH

GL, GH, BL, and BH are proportions of tankers in each category; w̄GL, w̄GH , w̄BL, and

w̄BH are equilibrium sanctioned probabilities conditional on each category. In equilibrium,

we have

w̄xy = w̄xy0 +
cxy
c̄
(w̄xy1 − w̄xy0), xy ∈ {GL,GH,BL,BH}

where w̄xy0 and w̄xy1 are defined in the paper, and cxy
c̄

captures the probabilities of dealing

with Rogue exporters in the current period. Therefore, based on the table, we have

p̄ = w̄BL · BL + w̄GL ·GL + w̄BH · BH + w̄GH ·GH,

α =
(1− w̄BH) · BH + (1− w̄GH) ·GH

(1− w̄BL) · BL + (1− w̄GL) ·GL + (1− w̄BH) · BH + (1− w̄GH) ·GH
,

β =
w̄BH · BH + w̄GH ·GH

w̄BL · BL + w̄GL ·GL + w̄BH · BH + w̄GH ·GH
.

Substituting them into Eq.(A-25) gives the pseudo-R2 for predicting to-be-sanctioned

tankers.

• Then, the model analog for the disclosure effect on high-risk tankers’ fixtures is

E[ppost − ppre|Hpost]

E[ppre|Hpost]
, (A-26)

where p is fixture and Hpost denotes a tanker that is labeled as high-risk in the post-period.

The average pre-period fixture, conditional on a post-period high-risk label is

E[ppre|Hpost] = P[Lpre|Hpost]× E[ppreL ] + P[Hpre|Hpost]× E[ppreH ], (A-27)

where E[ppreL ] and E[ppreH ] are price averages taken over the pre-period aggregate shock

ϵ̃ and P[.|.] is conditional probability. Noting that P[Lpre|Hpost] = 1 − P[Hpre|Hpost], we

calculate P[Hpre|Hpost] by splitting it into three cases based on tanker types: (i) Gpre and
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Gpost, (ii) Gpre and Bpost, and (iii) Bpre and Bpost. This is detailed below.

We use subscripts 0 and 1 to denote the pre- and post-period, respectively. For example,

H0 denotes the event of a tanker being labeled as high-risk in the pre-period. Using the

chain rule of conditional probabilities, we have

P[H0|H1] = P[H0|G1, H1]× P[G1|H1] + P[H0|B1, H1]× P[B1|H1]

= P[H0|G0, G1, H1]× P[G0|G1, H1]× P[G1|H1] +

P[H0|B0, G1, H1]× P[B0|G1, H1]× P[G1|H1] +

P[H0|G0, B1, H1]× P[G0|B1, H1]× P[B1|H1] +

P[H0|B0, B1, H1]× P[B0|B1, H1]× P[B1|H1]

We calculate each term as follows. First, as per Section 6.1.1 in the paper, we have

P[G1|H1] = 1 − θB,1 and P[B1|H1] = θB,1. Second, because in the model risk labels are

generated based on current tanker types only (i.e., the classification technology has i.i.d.

errors), the post-period tanker type is a sufficient statistic for the pre-period tanker type.

That is:

P[G0|G1, H1] = P[G0|G1], P[B0|G1, H1] = P[B0|G1],

P[G0|B1, H1] = P[G0|B1], P[B0|B1, H1] = P[B0|B1].

Because the change of a G tanker to a B tanker is irreversible, we have P[G0|G1] = 1 and

P[B0|G1] = 0. Since B1 tankers come from (i) B0 tankers that have not been sanctioned

or (ii) G0 tankers that have dealt with Rogue exporters in period 0 and have not been

sanctioned, we have

P[B0|B1] =
Q̃BL,0 + Q̃BH,0 + Q̃R

BL,0 + Q̃R
BH,0

Q̃BL,0 + Q̃BH,0 + Q̃R
BL,0 + Q̃R

BH,0 + Q̃R
GL,0 + Q̃R

GH,0

,

P[G0|B1] =
Q̃R

GL,0 + Q̃R
GH,0

Q̃BL,0 + Q̃BH,0 + Q̃R
BL,0 + Q̃R

BH,0 + Q̃R
GL,0 + Q̃R

GH,0

,

where Q̃BL,0, Q̃BH,0, Q̃
R
BL,0, Q̃

R
BH,0, Q̃

R
GL,0, Q̃

R
GH,0 are the number of tankers for each type

surviving sanction in pre-period:

Q̃BL,0 = QBL,0(1− wL,0), Q̃BH,0 = QBH,0(1− wH,0),

Q̃R
BL,0 = QR

BL,0(1− wL,0 − δL,0), Q̃R
BH,0 = QR

BH,0(1− wH,0 − δH,0),

Q̃R
GL,0 = QR

GL,0(1− δL,0), Q̃R
GH,0 = QR

GH,0(1− δH,0).

Finally, again because risk labels only depend on current tanker types, we have

P[H0|G0, G1, H1] = P[H0|G0] = θG,0, P[H0|B0, G1, H1] = P[H0|B0] = θB,0,

P[H0|G0, B1, H1] = P[H0|G0] = θG,0, P[H0|B0, B1, H1] = P[H0|B0] = θB,0.
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Combining the above equations yields

P[H0|H1] = θG,0(1− θB,1) +

θG,0θB,1

(
Q̃R

GL,0 + Q̃R
GH,0

Q̃BL,0 + Q̃BH,0 + Q̃R
BL,0 + Q̃R

BH,0 + Q̃R
GL,0 + Q̃R

GH,0

)
+

θB,0θB,1

(
Q̃BL,0 + Q̃BH,0 + Q̃R

BL,0 + Q̃R
BH,0

Q̃BL,0 + Q̃BH,0 + Q̃R
BL,0 + Q̃R

BH,0 + Q̃R
GL,0 + Q̃R

GH,0

)
.

• Finally, we use the probability of sending AIS signals from areas near sanctioned countries

as a proxy for the probability of dealing with Rogue exporters in the model. Defining the

probabilities for H and L tankers of dealing with Rogue exporters as:

bH = P[B|H]× P[c̃i < cBH ] + P[G|H]× P[c̃i < cGH ] = θB
cBH

c̄
+ (1− θB)

cGH

c̄
,

bL = P[B|L]× P[c̃i < cBL] + P[G|L]× P[c̃i < cGL] = θG
cBL

c̄
+ (1− θG)

cGL

c̄
,

the disclosure’s effect on high-risk tankers’ routes in the model is

E[bpost − bpre|Hpost]

E[bpre|Hpost]
, (A-28)

where

E[bpre|Hpost] = P[Lpre|Hpost]× E[bpreL ] + P[Hpre|Hpost]× E[bpreH ]. (A-29)

E[bpreL ] and E[bpreH ] are the averages of the respective probabilities taken over the pre-period

aggregate shock ϵ̃ and the conditional probability P[Hpre|Hpost] is as specified above.

F.6 Model-implied benefits for exporters

Table A-8 shows the model-implied benefits from the disclosure for the top 20 exporters.

The gain for each one is greater than the Windward’s stock market valuation, $42 mln.
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Table A-8: Model-implied benefits for top 20 exporters

This table shows the model-implied benefits from the disclosure for the top 20 exporters. We calculate the
market share using the number of tanker-trips for each exporter divided by the total number of tanker-trips
during one year before disclosure, i.e., August 2022 - July 2023. The dollar benefit equals the model-implied
total benefit, $4,299 mln, multiplied by the market share.

Rank Exporter Share
Benefits
($ mln)

Rank Exporter Share
Benefits
($ mln)

1 BP 6.16% 264.8 11 LITASCO 2.46% 105.8
2 VITOL 4.78% 205.6 12 ST SHIPPING 2.42% 104.2
3 SHELL 4.73% 203.4 13 ARAMCO 2.42% 104.2
4 REPSOL 4.40% 189.2 14 PETROBRAS 2.42% 104.2
5 EXXON MOBIL 3.92% 168.3 15 TOTAL 2.33% 100.3
6 UNIPEC 3.34% 143.6 16 ENI 2.19% 94.3
7 CSSSA 2.87% 123.4 17 CSSA 1.75% 75.1
8 TRAFIGURA 2.69% 115.7 18 AMPOL 1.66% 71.3
9 CNR 2.69% 115.7 19 ADMIC 1.62% 69.6
10 CHEVRON 2.47% 106.4 20 CEPSA 1.59% 68.5
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