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Abstract

I study disclosure costs through a new channel: reverse-engineering of strategies,
where disclosed trades enable outsiders to infer how fund managers combine charac-
teristics into trading rules. I exploit a rare natural experiment that shuts down simple
portfolio mimicry. Following the unexpected disclosure, fund performance declines
persistently by 36 bps per month, and outsider front-running increases. I verify
the mechanism by showing that simple machine-learning techniques can uncover
strategies that significantly predict funds” subsequent trades. To assess the social
cost on market efficiency, I develop a model with strategic interaction between a
fund manager and an outsider. Contrary to Huddart, Hughes, and Levine (2001),
the manager deters reverse-engineering not by randomizing trades but by sluggishly
updating strategies. Consequently, increasing disclosure frequency from quarterly to
monthly reduces price informativeness by 3.4%, an effect equivalent to a 40% increase
in noise trading. Overall, the results highlight that disclosure frequency is central to
reverse-engineering risk; delayed disclosure is ineffective at mitigating it.
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1 Introduction

Disclosure is a cornerstone of modern institutions, shaping accountability, trust, and
the efficient allocation of resources. However, advances in data science and machine
learning pose a threat that disclosed information enables outsiders to reverse-engineer
underlying strategies. This goes beyond simple mimicry of past actions—which is the
typical focus of prior work—as the reverse-engineering targets the deeper decision-
making logic and allows forecasts of future actions. For example, clinical trial disclosures,
reporting experimental efficacy and timing of phase transitions, allow competitors to
infer R&D pipelines and forecast market entry (Cognition Solutions, 2025). Likewise,
routine corporate disclosure, such as financial statements, can be analyzed to infer rivals’
inventory management strategies for strategic benchmarking (AMMEX, 2018). These
cases highlight a growing tension: disclosure brings benefits in transparency, but modern
technology can raise disclosure costs by revealing proprietary strategies.

This tension is especially salient in asset management. On the one hand, funds are
increasingly required to disclose their portfolio holdings over time. For example, the
U.S. Securities and Exchange Commission (SEC) is planning to increase the disclosure
frequency for mutual funds from quarterly to monthly (SEC, Release No. IC-35308).! The
stated objectives include: (i) protecting investors by reducing information asymmetries; (ii)
enabling timelier regulatory oversight; and (iii) improving market efficiency by allowing
the market to incorporate holdings information into asset prices.

On the other hand, although portfolio disclosure is intended to report outcomes of
past trades with a lag,? it may allow outsiders to reverse-engineer the underlying trading
rules—how active fund managers map asset characteristics into trading decisions—and
then anticipate managers’ current or even subsequent trades. Since trading strategies are
a fund’s core intellectual property for generating alpha, managing risk, and differenti-
ating products, revealing strategies beyond portfolio holdings can lead to unintended
consequences that run counter to regulatory objectives. First, it can harm fund investors
by increasing the risk of predation or front-running, thereby reducing fund performance.
Second, it can undermine effective oversight if reported holdings are strategically altered
by fund managers to prevent strategy leakage. Third, it can weaken market efficiency by

reducing incentives to develop new strategies, limiting the incorporation of new private

!nitially, the effective date for the amendments was November 17, 2025. The Commission subsequently
delayed the effective date to November 17, 2027.

2The Investment Company Act of 1940 mandates that individual mutual funds disclose their portfolio
holdings quarterly in Forms N-CSR and N-Q with a delay of no longer than 60 days.


https://cognition-solutions.com/perspective/reverse-engineering-competitors-rd-pipelines-ethical-insights-for-biotech-firms/
https://blog.ammex.com/benchmark-inventory-management-for-continued-success/
https://www.sec.gov/rules-regulations/2025/04/s7-26-22

information into prices.

To shed light on these unintended consequences, this paper examines how disclosure
affects fund performance, trading behavior, and market efficiency through the channel
of strategy leakage, where disclosed portfolios (or trades) enable outsiders to reverse-
engineer underlying trading strategies. A central empirical challenge here is to distinguish
between the unintended effects of strategy leakage and the intended effects of portfolio
disclosure. For example, following a regulatory shock that increases the frequency
of mandatory disclosure, fund performance can be affected because outsiders simply
copy disclosed holdings (i.e., the channel of portfolio mimicking), independently of any

reverse-engineering of the manager’s trading strategies.

I address this challenge by exploiting an exogenous, non-regulatory release of historical
trades. Specifically, Abel Noser, a consulting firm located in New York, unexpectedly sold
one-year-lagged, trade-level data for a few hundred U.S. funds in 2002 (Hu, Jo, Wang, and
Xie, 2018). Abel Noser had obtained these data when performing trading-cost analyses
for those client funds. The one-year lag in data provision is crucial for ruling out portfolio
mimicking. Because the one-year-lagged portfolios have already been public and stale by
the time due to regulatory portfolio disclosure, which requires a maximum lag of 60 days.
Outsiders would not have incentives to copy those old trades. Moreover, even if some
copying occurred, most positions would likely have been closed within a year, further
limiting any effects due to portfolio mimicking. Therefore, the plausible channel would

be that granular disclosure allows outsiders to reverse-engineer clients’ trading strategies.

Based on this setting, I first examine how disclosure affects fund performance through
strategy leakage. I focus on active equity mutual funds because (i) strategy leakage is
most relevant for active managers and (ii) mutual funds are central to policy debates over
disclosure regulation. I employ a difference-in-differences (DiD) approach to estimate the
impact on client funds’ risk-adjusted returns around the year of data release (i.e., 2002).
In particular, I construct the treated group using the pre-2002 client funds—those that
joined Abel Noser before the event—to ensure the exogeneity of the shock.

A valid DiD estimation requires the control group (non-client funds) to provide a
credible counterfactual for the treated group (client funds). To ensure comparability, I use
propensity score matching (PSM) to select non-client funds with similar ex-ante charac-
teristics as the control group. The results are robust to alternative control constructions,
including varying the matching thresholds and sorting on different sets of pre-specified
fund characteristics.

The estimates show that, even with a one-year lag, releasing past trades significantly



reduces the performance of client funds by 36 bps per month, indicating a sizable impact
from strategy leakage. Conceptually, strategy leakage can reduce fund performance in
two situations: (i) if clients follow rule-based, unprofitable strategies (e.g., characteristic-
based noise trading), leakage enables outsiders to anticipate their trades and earn profits
from their price impact, which in turn harms clients; or (ii) if clients employ profitable
proprietary strategies, leakage increases competition and erodes clients” alpha. In my
setting, the second situation is more plausible: client funds are, on average, large and
historically profitable, with an average pre-period alpha of 45 bps per month. My findings
align with prior evidence on cross-sectional variation in mutual fund skill (Cremers
and Petajisto, 2009; Jiang and Zheng, 2018; Kacperczyk, Sialm, and Zheng, 2005, 2008).
Moreover, a fund-level heterogeneity test shows that higher-skill clients experience larger
performance declines after the release of trades, suggesting that strategy leakage is

particularly consequential for skilled funds.

I conduct four tests to validate the strategy-leakage mechanism. First, I conduct a
placebo test focusing on client funds whose trading data was released after the 2002 event
year, leveraging the one-year lag between fund inception in Abel Noser and data release.
Consistent with the hypothesis of strategy leakage, these “placebo-treated” funds exhibit
no significant change in performance around the event year prior to their data release.

Second, I exploit fund heterogeneity using triple-difference analyses. I find that perfor-
mance declines are larger for client funds whose released trading data (i) spans a longer
period or (ii) covers more stocks. These patterns are consistent with the interpretation
that large samples—either in the time or cross-sectional dimension—enable outsiders to

reverse-engineer trading strategies with greater precision.

Third, I document an increase in front-running by outside predators—equity hedge
funds. Following Chen, Da, and Huang (2019), I identify equity hedge funds’ long
positions from 13F filings and use short interest to proxy for short positions. After the
data release, the correlation between equity hedge funds’ positions and clients” subsequent
trades rises significantly, consistent with intensified front-running by outside predators.
For comparison, I also examine hedge funds whose primary focus is not U.S. equities,
including “Fixed Income Arbitrage,” “Fund of Funds,” “Global Macro,” and “Emerging
Markets.” Because these funds are unlikely to engage in arbitrage in the U.S. equity

market, I do not find a similar increase in correlation for their equity holdings.

Fourth, I evaluate the feasibility of reverse-engineering trading strategies from an
outsider’s perspective using a machine-learning method. Conceptually, a trading strategy

is a function mapping from asset characteristics to trading decisions (direction and



quantity). Uncovering strategies, therefore, is to estimate a function with characteristics
as X and observed trades as Y. I employ a simple yet effective method—regression
trees—because their hierarchical structure plausibly reflects managers’ step-by-step,

criterion-based decision processes.’

Moreover, regression-tree implementations were
readily available at the time of the event (e.g., in R, Java, and SAS during the 2000s),
indicating that technology would not impede reverse engineering. I use a real-time
training procedure and account for the one-year data lag when uncovering strategies. In
out-of-sample tests, the uncovered strategies significantly predict subsequent client-fund
trades (t-stat of 4.6 for buys and 5.8 for sells, with stock-by-year fixed effects), confirming

the feasibility of uncovering strategies from past trades.

The ML training-testing framework enables a counterfactual analysis of how disclosure
frequency affects strategy leakage. For each disclosure frequency (quarterly, bi-monthly,
monthly, bi-weekly, weekly), I aggregate actual trades to the target horizon, retrain
the ML models to uncover strategies, and evaluate out-of-sample trading predictability.
Two implications emerge. First, more frequent disclosure leads to stronger trading
predictability, indicating greater strategy leakage. Second, while strategy leakage is
limited under quarterly disclosure, it becomes substantially more severe with monthly
disclosure: trading predictability roughly quadruples when moving from quarterly to

monthly reporting, as measured by standardized regression coefficients.

While the preceding analyses establish the causal impact of disclosure on fund perfor-
mance and validate the strategy-leakage mechanism, an important question remains: how
does strategy leakage affect fund trading behavior and market efficiency in equilibrium?
Studying this empirically is challenging for two reasons. First, although treating a subset
of funds enables causal inference for performance, it is difficult to assess market-wide
effects under counterfactual regimes where all funds face intensified leakage (e.g., with
more frequent disclosure). Second, without theoretical guidance, an empirical study
of trading behavior lacks a clear organizing framework. To address these challenges, I
develop a simple model with strategic interaction, derive a testable implication for trading
behavior, and calibrate the model to the data to evaluate the effect on market efficiency.

The model has infinite periods. In each period, an asset pays a dividend that is a linear
function of observable characteristics plus noise. A fund manager and an outsider, both

endogenously updating trading strategies to maximize expected profits, trade with noise

3For example, Sandy Sanders, manager of John Hancock Fundamental All Cap Core Fund (JFCIX),
describes a Seven-Step Stock Picking Process—(1) competitive advantage, (2) good industry, (3) growth
drivers, (4) financial statement analysis, (5) management team, (6) valuation analysis, (7) risks—consistent
with a tree-like evaluation sequence (Investor’s Business Daily).


https://www.investors.com/etfs-and-funds/personal-finance/best-mutual-fund-found-a-winning-seven-step-stock-picking-process/

traders each period. A trading strategy is a coefficient vector mapping from characteristics
to trades. There is a time-varying “true” strategy embedded in the dividend process that
would be the manager’s optimal strategy absent the outsider. While both the manager
and the outsider observe characteristics, only the manager knows the true strategy; the
outsider attempts to learn it from the manager’s past trades.

The core trade-off is between the manager’s current vs. future profits: deploying a
better trading strategy increases current profits but facilitates the outsider’s learning,
thereby eroding the manager’s future profits. This trade-off implies that the manager

may strategically respond in equilibrium.

My model yields a counterintuitive implication for strategic response. Huddart,
Hughes, and Levine (2001) demonstrate that when an informed trader must disclose
past trades, he optimally adds random noise to trades to deter portfolio mimicking.
By analogy, one might expect the manager to add random noise either to trades or to
strategies (thus, frequently update strategies) to deter strategy leakage. However, I show
that such randomization is never optimal in this case. Instead, the optimal response is
sluggish updating.

This is because, unlike portfolio mimicking, strategy leakage arises from learning
across multiple trades and periods. Adding random noise increases variance but does
not create bias in the outsider’s estimates. Sluggish updating, by deliberately sticking
to outdated strategies, biases the learner away from the current true strategy. A cost-
benefit analysis shows that, for an equivalent reduction in current profits, creating bias
via sluggish updating always deters strategy leakage more effectively than increasing
variance via randomization. In other words, the variance that needs to be added to
prevent learning can be too high to maintain the trade’s underlying profitability.

I empirically test this model-generated implication on fund trading behavior. Sluggish
updating predicts higher persistence in trading strategies. To measure persistence, I
estimate client funds’ trading strategies year by year and compute the correlations of
trading strategies across adjacent years. Consistent with sluggish updating, strategy
persistence rises steadily after the data release: the year-over-year correlation increases

from 0.85 in the pre-period to 0.93 by the end of the sample.

Finally, I study market efficiency—measured by price informativeness, the extent to
which equilibrium prices reflect fundamentals. Strategy leakage has two opposing effects:
it can enhance informativeness by improving the outsider’s information, but it can reduce
informativeness by inducing the manager to update sluggishly. To assess the net effect, I
calibrate the model. The key parameter is the outsider’s learning precision, which proxies



for disclosure frequency (higher precision corresponds to more frequent disclosure). I
calibrate this precision via a bootstrap procedure using the released trades.

The calibration indicates that the negative force dominates over a wide range. In-
creasing disclosure frequency from quarterly to monthly reduces price informativeness
by 3.4%, an impact equivalent to a 40% increase in noise trading. Thus, more frequent

disclosure can backfire, undermining the regulatory goal of improving market efficiency.

Related Literature

First, my study contributes to empirical studies of the effects of trade (or portfolio)
disclosure. For example, Agarwal, Mullally, Tang, and Yang (2015) studies the impact
of mandatory portfolio disclosure on mutual funds’ performance; Shi (2017) extends
the study to hedge fund performance; Hagenberg (2025) finds that for U.S. insurers,
an increase in the transparency of investment transactions increases portfolio similarity.
While these studies emphasize portfolio mimicking as the main mechanism, I identify
and quantify a distinct channel—strategy leakage. In contrast to the view that reporting
delays effectively mitigate portfolio mimicking, I show that strategy leakage can persist

even under a one-year reporting delay.

Second, I contribute to the literature on how the adoption of AI and machine learning
technologies shapes the functioning of financial markets (Dou, Goldstein, and Ji, 2025;
Dugast and Foucault, 2018, 2025; Farboodi and Veldkamp, 2020). Specifically, Dou,
Goldstein, and Ji (2025) examine how Al-powered informed speculators learn trading
strategies within a model-free, autonomous reinforcement learning framework when they
face sophisticated investors who trade smartly and strategically against them. While their
study focuses on Al-powered trading execution strategies based on informative trading
signals, I provide complementary empirical evidence that machine learning methods
can facilitate the learning of trading strategies from disclosed trades to construct such
informative signals. I further show that the frequency of trade disclosures is a key
determinant of the precision of this learning process.

Third, my study contributes to the study of information disclosure and strategic
trading. Huddart, Hughes, and Levine (2001) show that when an informed trader is
required to disclose past trades, she will add a noise component (i.e., randomization)
to prevent full revelation of information. Yang and Zhu (2019) derives the condition of
such randomization and finds that randomization is not only possible but also likely.

Different from these papers studying under the situation of portfolio mimicking, I show



that to deter strategy mimicking, the informed trader would follow a completely different
strategic behavior—never randomizing but sluggishly updating. The intuition is that
deterring strategy mimicking requires introducing bias for outsiders to learn, but simply
adding noise will not achieve this goal. In terms of the effect on price informativeness,
Huddart, Hughes, and Levine (2001) show that the negative effect from randomization
does not dominate the positive effect from information. However, in my setting, I show
that the negative effect from sluggish updating will dominate, which leads to unintended

consequences of increasing disclosure frequency.

More generally, my study contributes to the literature on the role of intermediaries and
the implications for asset pricing (Dou, Kogan, and Wu, 2025; Goldman and Slezak, 2003;
Haddad, Huebner, and Loualiche, 2025; He and Krishnamurthy, 2013; Kaniel and Kondor,
2013; Koijen and Yogo, 2019). I show that fund managers’ strategic responses aimed
at deterring strategy leakage can reduce price informativeness as disclosure frequency
increases. My result highlights an unintended consequence that runs counter to regulatory
objectives of enhancing market transparency.

Lastly, my study is related to the research based on Abel Noser data, e.g., Eisele,
Nefedova, Parise, and Peijnenburg (2020); Gormley, Kaplan, and Verma (2022); Jame
(2018); Puckett and Yan (2011). Unlike prior papers that study institutional investors’
trading behavior based on Abel Noser data, my contribution is to use the data-sales event

to identify strategy leakage and examine the impact.

The rest of the paper is organized as follows. Section 2 provides institutional back-
ground. Section 3 presents empirical identification of the impact on fund performance.
Section 4 sheds light on the mechanism. Section 5 presents a model to study the equilib-

rium effect of strategy leakage. Section 6 provides additional tests. Section 7 concludes.

2 Institutional Background

The institutional background in this section mainly follows the survey paper, Hu, Jo,
Wang, and Xie (2018). Abel Noser Solutions (originally named ANcerno), located in New
York, is a firm providing transaction cost analysis to hundreds of institutional clients,
including Fidelity, Vanguard, and Putnam. Due to its business, when institutional clients,
e.g., mutual funds, execute trades, the trading data can be directly sent to Abel Noser
through an Order Delivery System for transaction cost analysis. In 2002, Abel Noser
started to sell its clients” historical trading data. The annual subscription fee was $500

and later gradually increased over the years. The timing of the data sales is primarily
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because a PhD intern working on his doctoral dissertation about institutional trading
cleaned the data, making it ready for sale.

When providing the trading data, Abel Noser replaced fund identities with numeric
codes, i.e., clientcode and clientmgrcode. The original data was anonymous, i.e., no insti-
tution identity information was provided. One may consider uncovering identities by
comparing cumulative trading to holdings changes from public 13F filings, as in the
algorithm of Hu, Ke, and Yu (2009). However, this exercise involves non-trivial work.

Abel Noser provides data on a quarterly basis with a time lag of one year.

The data provided by Abel Noser contains fund numeric codes: clientcode and clientm-
greode. A classification code is included to identify the type of institutional clients: plan
sponsors (clienttypecode = 1), investment managers (clienttypecode = 2), and brokers
(clienttypecode = 3). Abel Noser data do not contain many broker clients, thus the data
on clienttypecode = 3 is few. Each client trading execution corresponds to one observation
in the Abel Noser data. The variables contain specific information for each transaction,
including the symbol, CUSIP, side, price, volume, and timestamps. Symbol and CUSIP
identify the stock traded. Side, price, and volume specify whether the trade is a buy or sell,

the execution price, and the number of shares traded.

During 2011-2012, the Abel Noser data included a MasterManagerXref file containing
cross-reference identity information for sample institutions. This file was only available
during this period and not for data subscribers before or after. With this cross-reference
file, data users can match the Abel Noser daily trading data with other databases by
fund name. Shortly after the revelation of institutional identity information, in 2012, Abel
Noser removed the fund numeric codes from the data. Thus, the Abel Noser data after
that is a pooled sample of trades, and users cannot separately identify and track trades
for different institutions. In 2017, Abel Noser completely stopped providing data.

3 Empirical Identification

In this section, I exploit the shock—Abel Noser sold its clients” one-year-lagged trade-level
data in 2002—to examine the causal impact of disclosure on fund performance through
the channel of strategy leakage. The one-year lag for the released trades helps rule out
the alternative explanation of portfolio mimicking for two reasons. First, because the one-
year lagged portfolios have already been publicly available through regulatory portfolio
disclosures, we expect data buyers not to have an incentive to follow stale information.

Second, despite following, the impact on clients through portfolio mimicking would

8



be limited, because over the one year, it is likely that clients have already closed their
positions. Taken together, the exogenous release of one-year-lagged trades facilitates the
identification of strategy leakage.

3.1 Data and sample

I obtain data from several sources. Mutual fund returns are from CRSP, and fund holdings
are from the Thomson Reuters 512 database. I link the two databases using the MFLINKS
database. Following standard practice in the mutual fund literature, I drop funds with
last-quarter-end TNA below $5 million. To focus the analysis on U.S. domestic equity
mutual funds, I exclude international funds (IOC = 1), municipal bond funds (I0OC = 5),
bond & preferred funds (IOC = 6), and metals funds (IOC = 8) based on the investment
objective code (IOC). To focus the analysis on active funds, I further exclude index funds
based CRSP index flag (i.e., crsp_index_flag = ‘B’, ‘D’, or ‘E’) as well as a name search (i.e.,
fund names include ‘INDEX’, INDX’, ‘IDX’, or ‘S&P’). To obtain gross (before-expense)
fund returns, I add the monthly expense ratio (variable exp_ratio divided by 12) back to
the monthly fund returns reported in CRSP.

I obtain institutional detailed trades from the Abel Noser data, which spans the
period from 1998 to 2011 and includes 1,039 unique institutions.* 1 am able to access
the cross-reference identity information provided by Abel Noser, which is only available
during 2011-2012. Based on the name information, I match Abel Noser clients to funds
in Thomson Reuters/CRSP by jointly considering (i) fund names and (ii) the similarity
of trading behavior. The details of the matching procedure are described in Appendix
A. It finally yields 151 matched mutual funds. Table 1 Panel A presents the number
of matched funds by the beginning years of Abel Noser clients. I conduct most of the
analyses in this paper with a period ending in 2007, to avoid contamination due to the
2008-2009 global financial crisis.

I construct stock characteristics using stock returns, prices, and trading volumes from
CRSP; accounting information and short interest from Compustat; analyst recommen-
dations and forecasts from IBES; and institutional ownership from Thomson Reuters.
Construction of characteristics follows the procedure in Green, Hand, and Zhang (2017)
and Hou, Xue, and Zhang (2020). The list of stock characteristics is in Appendix B.

4One institution (identifier: clientcode) may include multiple funds (identifier: clientmgrcode).



3.2 Identification strategy

I employ difference-in-differences (DiD) regressions to estimate the impact on client funds’
return after Abel Noser sold their trading data in 2002. I use the funds that became Abel
Noser’s clients before 2002 as the treated group. Because these funds would not expect
Abel Noser to sell their trading data in 2002, such an empirical design helps achieve
the exogeneity of the shock. The control group is the non-client funds. The regression
specification is given by

ARt = Bo + 1 X H{yearEZOOZ} + €t (1)

where AR; is the average treated-minus-control (risk-adjusted) fund returns in month
t, and Iyyear>2002) is @ zero-one indicator of the post-period. ;1 captures the treatment

effect on fund performance due to trading data release.

A potential concern of the above estimation method is the self-selection issue. Because
funds endogenously choose whether to become Abel Noser’s clients, it raises a concern
that the client funds might systematically differ from the control group. To deal with the
concern, I construct the control group by conducting propensity score matching (PSM) to
pick funds with characteristics similar to the clients. Table 1 Panel B reports the balance

test on fund characteristics.

For PSM, I estimate the propensity scores for each fund by cross-sectionally regressing
a zero-one indicator of client funds on pre-period fund characteristics (including TNA,
age, fund «, fund holding scores, volatility, turnover ratio, and expense ratio) via logistic
regression. I use k-nearest neighbors matching by matching each client fund to k (e.g.,
k = 20) non-client funds with the closest propensity scores in each month. Then, I
calculate the performance difference between each client fund and the average of its
matched non-client funds. The dependent variable in Eq.(1), AR, is the average of the
performance differences across all client funds in month t.

Alternatively, I construct the control group via sorting as a robustness check. I first
cross-sectionally sort funds on characteristics (e.g., double sort on TNA and past a), and
then match each client fund to the non-client funds in the same sorting group. Once the
control group is constructed, I calculate AR; as mentioned before.

10



3.3 Disclosure effect on fund performance
A. Baseline results

Table 2 Panel A shows the estimation returns of Eq.(1) with PSM and k = 20 nearest
neighbors. After Abel Noser sold its clients’ trading data, despite the one-year lag, the
client funds’ risk-adjusted returns significantly dropped by around 36 bps per month
compared to similar non-client funds. The magnitudes of the performance drop are
similar across different risk-adjustment models: 38.5 bps (t-stat=2.07) for excess return,
40.8 bps (t-stat=2.52) for CAPM «, 30.5 bps (t-stat=3.25) for Fama and French (1993)
three-factor (FF3) «, and 33.8 bps (t-stat=4.19) for Carhart (1997) four-factor (CH4) «.

The results are robust for alternative ways of constructing the control group. As the
results in Table 3 show, varying the number of neighbors in PSM to 10 or 50, as well as
picking the control group by sorting on different characteristics, all generate similar and

significant treatment effects.

To examine the timing of impact on fund performance, I separately estimate the

treatment effects for each year using the following regression:

5
ARy = Z :Bl X II{year I} + €, (2)
I=—4

where [ = 0 denotes the event year, i.e., 2002. Figure 1 presents the estimated time series
of B; for CH4-adjusted returns. As a benchmark, I set the coefficient in 2001, i.e., one year
before the event, as zero. There are several key patterns in the figure. First, all coefficients
in the pre-period are insignificant and close to zero, which supports that the parallel
trends assumption tends to hold. Second, precisely from the year Abel Noser started
providing data, the performance of client funds began to drop, which is consistent with
the causal interpretation. Finally, the performance decrease persists until the end of the
sample period.

B. Placebo test

I conduct a placebo test to further address the concern about the selection on the unobserv-
ables. For example, funds favoring Abel Noser may share some common unobservable
features, which could be related to their performance drop in 2002. To rule out this
explanation, I construct a placebo-treated group by (i) using all of Abel Noser’s clients
(including those who joined in the post-period) and (ii) focusing on the returns before
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their trading data was released.” For example, suppose there is a fund that joined Abel
Noser in January 2003. Given the one-year-lag rule of providing data, the trading data
of this fund would not be released until at least January 2004. In this case, I drop the
observations after January 2004 for this fund. Therefore, if the previously estimated
performance drop indeed comes from the trading data release, instead of the alternative
explanation, we would not see any effect for this placebo test, as only the pre-date-release

fund returns are included.

Table 2 Panel B shows the results of the placebo test. As expected, the performance
changes around 2002 for the clients before their data release are close to zero and
statistically insignificant. Figure 2 plots the time series of effects for these placebo-
treated client funds. Again, all coefficients in both pre- and post-periods are statistically
insignificant under 95% confidence intervals. These results help rule out the alternative
explanation and suggest that trading data release is likely to be the reason for the
performance drop.

C. Heterogeneity

To support the trading strategy leakage mechanism, I exploit fund-level variation. Specifi-
cally, if trading strategy leakage is the true mechanism, we would expect client funds to
experience a larger performance drop (i) if their released trading data facilitates outside
investors to learn their strategies better, or (ii) if outside investors have stronger incentives
to learn their strategies. Therefore, I hypothesize that the client funds” performance will
decline more if (i) their trading data spans a longer period, (ii) contains trades on more

stocks, or (iii) client funds have better skills.

I test the hypotheses by conducting a triple-differences analysis. The regression

specification is

AR;t = Bo X Liyear>2002) T B1 X Tiyear>2002} X Tffund category} + FE +€it, 3)

where AR;; is client fund i’s risk-adjusted fund returns in month ¢ minus the average
from the matched non-client funds, and B is the coefficient we focus on. I construct the
measures Of Iig g category} ONly using pre-period information to alleviate concern about

endogeneity issues.

I define three zero-one indicators to reflect fund categories. First, an indicator of

5To obtain a valid DiD estimation, I require funds in the sample to have at least 12 observations in the
post-period.
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“longer period” (Ifjonger period}) €quals one if, until the end of 2001, the period of being
Abel Noser’s client is longer than the sample median. Second, an indicator of “more
stocks” (Ifmore stocks}) €quals one if, until the end of 2001, the number of stocks traded
by a client fund is more than the sample median. Finally, an indicator of “better skill”
(Igpetter skiny) equals one if the fund CH4 alpha in the pre-period is higher than the sample

median.

Table 4 reports the triple-differences analysis for the three tests. Consistent with my
hypotheses, first, clients whose trading data spans a longer period or contains trades on
more stocks suffer larger performance drops after data release, as a large sample (either
in time or stock dimension) facilitates outside predators to uncover trading strategies
with better precision. Second, clients with better skills experience larger performance
drops after data release, as outside predators have stronger incentives to uncover more
profitable strategies. Overall, the variation tests suggest that the documented effects come
from trading strategy leakage.

D. Trading returns

Besides using fund returns, I conduct a test using trading returns. The advantage of
this test is that the sample size is larger, because there is no need to match Abel Noser
data to CRSP to obtain fund returns. As in previous tests, I focus on active funds,
thus I select clients based on Abel Noser’s classification code, i.e., investment managers
(clienttypecode = 2), here.® Similar to the baseline test, here I also focus on the clients
who joined Abel Noser before 2002. After the above sample selection, the sample contains
1,015 funds (or accounts), and its total trading volume is about 32 times the volume in
the baseline matched sample. The sample size is much larger because it not only contains
unmatched mutual funds in the baseline sample, but also contains other types of funds,
e.g., hedge funds.

I calculate trading returns by tracking stock returns after each trade in the following
several days and weighing them by the dollar trading volume. Specifically, for each
fund-month, I calculate the dollar-volume-weighted risk-adjusted return as

Rk R
Rlrade _ Y Buyi X Rigyyavm Ly Selli X Rigi a0y @
Y Buy; Y Sell; ’

®Abel Noser classifies clients into three types: plan sponsors (clienttypecode = 1), investment managers
(clienttypecode = 2), and brokers (clienttypecode = 3). Plan sponsors are usually passive pension funds.
Investment managers include both mutual funds and hedge funds. In the Abel-Noser/CRSP matched
sample, all funds’ clienttypecode are 2.
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k
[d+1,d+h]

cumulative risk-adjusted return over day [d + 1,d + h|. Then, I regress the client funds’

where Buy; or Sell; is dollar trading volume for trade j, and R is stock k’s

average trading return on the post-period indicator to estimate the change in performance.

Table 5 reports the results of the impact on clients” trading returns.” I set the horizon (h)
to be 5, 10, or 20 trading days. Again, there are significant drops in trading returns across
different specifications. Figure 3 plots the time series of the impact, which is consistent
with the dynamics in baseline results. Taken together, I provide causal evidence that Abel
Noser’s selling trading data adversely affects its clients” performance. Despite Abel Noser
providing data with a one-year lag, the negative impact on fund returns is non-negligible

and persistent.

3.4 Evidence on increase in outsiders’ predatory trading

I provide evidence on the increase in outsiders’ predatory trading due to the release of
clients’ trading data. As institutionalized arbitrageurs in the financial market, hedge
funds might be thought of as potential predators (Chen, Hanson, Hong, and Stein, 2008).
Predatory trading, also known as “front-running”, implies hedge funds may already
hold (short) a stock before client funds buy (sell) the same stock (Brunnermeier and
Pedersen, 2005). Given that the release of data facilitates hedge funds to learn more about
Abel Noser’s clients, we would expect an immediate increase in hedge funds’ predatory

trading activities against client funds right after the trading data release.

To examine how predatory trading activities evolved around 2002, I conduct the

following regression and separately estimate for long and short sides:

DTVity1 = B x POSi: + Y. O X POSks X Lyyegr 1y + Py + €xpr1- - (5)
1€{1999,2000,2002,2003}

DTVy ;11 is the client funds” aggregate buy (for long-side estimation) or sell (for short-side
estimation) dollar volume on stock k in month t + 1. To be consistent with the treated
group in the fund performance test, I focus on the client funds that joined Abel Noser
before 2002.

For long-side estimation, POSy ; is aggregate hedge fund holdings (HF HD) based on
the hedge fund list from Chen, Da, and Huang (2019).8 As hedge funds report holdings
on a quarterly basis, I include only the months of the quarter ends in the regression, i.e., t

"The sample here starts from 1999 because the data in 1998 are sparse, which makes the calculated
trading returns noisy.
81 remove the hedge funds that are also Abel Noser’s clients when constructing HFHD.
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is the month of March, June, September, or December. For short-side estimation, I follow
the literature to use monthly short interest (SINT) as a proxy for hedge funds’ short
positions (Chen, Hanson, Hong, and Stein, 2008; Chen, Da, and Huang, 2019; Jiao, Massa,
and Zhang, 2016).

To control for slow-moving stock characteristics, e.g., stock size, I add stock-by-year
fixed effects, iy, to the regression. Coefficient p captures the level of predatory trading
activities in 2001, which is the benchmark, and J; captures the change of predatory trading

activities in year [ relative to the benchmark.

Table 6 shows the estimation results of Eq.(5) for long and short sides, and Figure
4 visualizes the dynamics. There are several key observations. First, B coefficients are
significant: B = 0.299 (t-stat=4.69) for the long side and B = 0.106 (t-stat=1.84) for
the short side, reflecting hedge funds tend to trade before the client funds even before
Abel Noser selling data. This result is consistent with the notion that hedge funds, on
average, are smart arbitragers. Second, J; coefficients in the pre-period (1999 and 2000)
are small and insignificant, which suggests no substantial change in predatory trading
activities before the data release. This result supports the parallel trend assumption. More
importantly, consistent with the hypothesis, there are significant surges in predatory
trading activities for both long and short sides immediately after Abel Noser’s selling
data in the post-period (2002 and 2003). The hedge funds’ predatory trading intensity
almost double (triple) in 2002 relative to 2001: dypp2 = 0.252 (t-stat=2.27) for the long side
and dyggp = 0.216 (t-stat=2.28) for the short side.

Taken together, the evidence suggests that the release of trading data, even with a
one-year lag, facilitates outsiders, such as hedge funds, to uncover strategies and conduct
predatory trading, which in turn hurts client funds’ performance.

4 Uncovering Trading Strategies via Machine Learning

In this section, I further evaluate the strategy leakage mechanism by testing whether
trading strategies can be uncovered from the released trades. I first present an illustrative
example of uncovering a specific trading strategy, and then extend to a general approach
using a machine-learning (ML) method. I also conduct counterfactual analyses to examine

how disclosure frequency influences the extent of strategy leakage.
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4.1 An example of uncovering the Golden Cross trading strategy

I begin with an illustrative example of uncovering a specific trading strategy: Golden
(Death) Cross. The Golden (Death) Cross is a momentum-type trading strategy that buys
(sells) assets when a relatively short-term moving average line crosses above (below) a
long-term moving average line. Before exploring the trading data, we do not know (i)
whether client funds use such a strategy, and (ii) if so, what horizons of moving averages
they use. Therefore, the goal of the strategy-uncovering exercise is not only qualitative

(e.g., types of strategies), but also quantitative (e.g., parameters of strategies).

The procedure of uncovering strategies is as follows: First, I construct multiple pairs
of short-term vs. long-term moving-average prices, for example, all binary combinations
from horizons of 5 days, 10 days, 15 days, 20 days, and so on. Then, I examine at
which horizon pair clients’ trades exhibit the strongest discontinuity pattern around the
cross-point. Specifically, if clients tend to discontinuously buy (sell) more when the x-day
moving-average price merely crosses above (below) the y-day moving-average price, it
would suggest that clients are likely following the short-term-x-and-long-term-y Golden
(Death) Cross strategy. On the contrary, if under any pair of horizon combinations, there
is no discontinuity pattern, it would suggest that clients are not following the Golden

(Death) Cross strategy.

The results are displayed in Figure 5. In this example, I focus on the strategy for the
aggregate client funds. To visualize the discontinuity, I plot the net trading volume (on
the y-axis) against the ratio of the short-term moving average to the long-term moving
average prices (on the x-axis). A ratio larger (smaller) than one indicates the short-term
moving average line is above (below) the long-term moving average.9 In the left panel,
there is a clear discontinuous trading pattern around the point where MA10 crosses
MAZ20. In contrast, in the right panel, we do not see such discontinuity when changing
the horizons to MA15 and MA30. Taken together, these suggest that client funds are
likely using MA10 and MA20 to conduct the Golden (Death) Cross strategy, instead of
using MA15 and MA30.

4.2 General approach of uncovering trading strategies

Motivated by the previous example, I consider a general approach to uncovering trading

strategies from the released trades. Conceptually, a trading strategy is a function mapping

9Results are similar if I strictly consider the case of cross above or below, i.e., the ratio changes from
smaller than one to greater than one or vice versa.
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from asset characteristics to trading decisions (i.e., trading directions and quantities).
And uncovering trading strategies is a process to reverse engineer: (i) the characteristics
used, e.g., MA10 and MA20 for the Golden Cross strategy; (ii) the combination rule, e.g.,
whether MA10 crosses above or below MA20; and (iii) the trading decisions assigned,
e.g., buy if crosses above. Therefore, a natural approach is to utilize machine-learning
techniques to efficiently select/combine a large number of characteristics to search for

the underlying trading strategies.

Among various machine learning methods (e.g., Lasso, clustering, trees, neural
networks), regression trees are a suitable approach for uncovering trading strategies.
This is because, first, regression trees are a supervised-learning method that can efficiently
explore the underlying relationship between stock characteristics and observed trades.
Second, regression trees can easily incorporate non-linear and interactive relations, which
allows for the uncovering of some complicated strategies. Additionally, the structure
of regression trees is simple and intuitive—similar to multidimensional sorting, which
provides an advantage in terms of transparency and interpretability compared to methods
like neural networks. Finally, regression trees, introduced by Quinlan (1986), were
implementable at the time of the release of trading data—there were existing tree-
algorithm packages (such as in R, Java, and SAS) in 2002. This suggests that technology
would not be a constraint for implementing my approach to uncover strategies at that time.
My results would also serve as a lower-bound estimation, given more recent technological

developments such as transformers and large language models (e.g., ChatGPT).

I construct samples for training trees as stock-week panels: for the observation of
stock k and week w, the dependent variable is the aggregate client funds” buy (or sell)
dollar volume on that stock from week w + 1 to w + 4 scaled by the stock’s past dollar
volume. I focus on aggregate client funds because predatory trading requires price impact
from the targets. I cumulate the client funds’ trading volume over four weeks to reduce
noise. Scaling by the stock’s trading volume is to control for stock size and liquidity. I
transform the dependent variable into a cross-sectional percentage ranking when training
the regression trees. For predictors, I construct 61 stock characteristics, including past
returns, liquidity measures, betas, fundamentals, industry classification, analyst forecasts,
etc. The list of predictors is in Appendix B. As a single tree can be a “weak learner”, I
follow the literature (e.g. Gu, Kelly, and Xiu, 2020) and employ an ensemble method of

Gradient Boosted Regression Trees (GBRT) to combine outcomes from many trees.
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4.3 Trading predictability

I follow a real-time training-testing procedure and update regression trees on a quarterly
basis. At the end of quarter g, given that Abel Noser’s data is provided with a one-year
lag, I construct the training sample with the one-year gap spanning three years, i.e., from
quarter g — 15 to g — 4. After training, for the weeks in quarter g + 1, I input the most
recent stock characteristics to the trees to predict client funds’ following trades. Based on
the outputs from regression trees, I define BuyScorey ,, and SellScorey ,, as the prediction
scores for client funds” next-week buy and sell trades, respectively, on stock k at the end

of week w.

To evaluate the uncovered trading strategies, I test the out-of-sample trading pre-
dictability, that is, whether the uncovered trading strategies can predict the subsequent
trades of client funds. Specifically, I estimate the following regression:

NetDTVj p+1 = B1 X BuyScorey o, + B2 x SellScorey ;, + FE + €k 141, (6)

where NetDTV; 1 is the aggregate client funds’ net dollar volume on stock k in week
w + 1 scaled by the stock’s past dollar volume, BuyScorey ,, and SellScorey ., are outputs
from trees based on the stock characteristics in week w. For better interpretability on
coefficients, I transform NetDTVj ;.1 to cross-sectional percentage rank (ranging from 0
to 100), and scale BuyScorey ,, and SellScorey ,, by their full-sample standard deviations.

Table 7 reports the estimation results of Eq.(6). The testing period is from 2002 to 2007.
As it shows, across the specifications with different fixed effects, BuyScore (SellScore) can
always positively (negatively) predict, with strong significance, client funds’ net trades in
the following week. In column (3), I add the stock-by-year fixed effects, which control for
the slow-moving stock characteristics. The coefficients under this specification imply that
one-std. increase in BuyScore (SellScore) corresponds to 1.2 (2.1) pp., with t-stat of 4.60
(5.82), increase (decrease) in the cross-sectional ranking of net trading next week. This
suggests the extracted trading strategies can capture relatively high-frequency trading

dynamics within a stock-year.

In sum, using a simple machine-learning method—similar to multidimensional sorting
and only requiring a little computational power—I show that it is feasible to uncover

trading strategies with significant out-of-sample trading predictability.
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4.4 Predatory portfolios

I next examine the profits an outsider could earn by predating client funds using the
uncovered strategies. Broadly speaking, predatory trading takes two forms depending on
the informativeness of client funds’ trades (Chen, Hanson, Hong, and Stein, 2008): First,
if client trades are non-informative, the predatory trading involves “liquidity provision”—
trading in the opposite directions to gain from client funds’ price impact. Second, if client
trades are informative, the predatory trading involves “front-running”—trading in the
same direction to gain from the information in those trades. In the pre-period, client
funds earned positive alphas, i.e., 45 bps per month, indicating that their trades were
informative. Consequently, a profit-seeking outsider would be inclined to trade in the

same direction as the uncovered strategies, i.e., to front-run rather than provide liquidity.

I evaluate the profitability of front-running client funds by constructing a long-short
“predatory” portfolio based on the uncovered strategies. At the end of each week, I
sequentially sort stocks on BuyScore and SellScore into 5 x 5 portfolios, and go long
(short) stocks in the group of high-BuyScore-low-SellScore (low-BuyScore-high-SellScore),
i.e., to long (short) the stocks that client funds are predicted to buy (sell). BuyScore and
SellScore are generated from the uncovered trading strategies inputted with recent stock
characteristics as described before. To ensure the results are not driven by small stocks, I
only keep large stocks with market equity above the 20th-percentile NYSE breakpoint
(Hou, Xue, and Zhang, 2020).

I regress the long-short portfolio return on common factors over the testing period
(i.e., 2002-2007) and report the average weekly abnormal returns in Table 8. As the
results show, the predatory strategy based on the uncovered trading strategies earns
significant alpha that cannot be explained by CAPM, Fama and French (1993) three-factor
model, and Carhart (1997) four-factor model. The results are robust for either equally
or value-weighted. More importantly, the magnitude of the profitability is large and
matches the magnitude of client funds’ loss. For example, the CH4 alpha of the predatory
strategy with equally weighted stocks in the portfolio achieves 21.2 x 4 = 84.8 bps per
month (t-stat=3.27). As in the previous tests of trading predictability, here I also include
the one-year lag of data feeding when training ML models.

Overall, the results suggest that it is not only feasible to backout trading strategies to
predict client funds’ trades, but also highly profitable to conduct predatory trading based
on the uncovered trading strategies.
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4.5 Disclosure frequency and strategy leakage

The ML training-testing framework enables a counterfactual analysis of how disclosure
frequency affects the extent of trading strategy leakage. This is an important question
with implications for optimal disclosure policy. To answer the question, I re-examine
trading predictability and the predatory-portfolio alphas at each alternative disclosure
frequency. Specifically, for each frequency (quarterly, bi-monthly, monthly, bi-weekly, or
weekly), I aggregate the actual trades to the target frequency, retrain the ML models to
uncover strategies, and evaluate out-of-sample predictability and alphas of predatory

portfolios using the same testing procedure.

Figure 6 reports trading predictability—measured as the coefficient difference be-
tween BuyScore and SellScore as in Table 7 column 3—and the CH4 alphas of predatory
portfolios. Consistent with intuition, higher disclosure frequency implies more serious
strategy leakage. Two reasons drive this pattern: (i) more frequent disclosure yields more
observations for uncovering strategies, and (ii) finer granularity reveals trades that would
be unobserved at lower frequency (e.g., round trips).

An interesting finding is that the monthly frequency emerges as a crucial threshold:
both trading predictability and predatory-portfolio alphas shift from statistically insignifi-
cant to significant at monthly disclosure frequency. This implies that increasing disclosure
frequency from quarterly to monthly—as in the SEC’s new rule, Release No. IC-35308,
effective November 2027—can materially intensify strategy leakage, making it a key

consideration for policy design.

4.6 Returns of client funds vs. Returns of predatory portfolios

I provide evidence that the losses of the client funds are consistent with the gains from
the predatory portfolios. I calculate the correlation coefficient by regressing the client
funds’ returns (i.e., the treated-minus-control risk-adjusted fund returns, ARy, in Eq.(1))
on the returns of the predatory long-short portfolio (as described in Section 4.4). Because
predatory trading is to exploit client funds, we expect a negative correlation between
these two.

Table 9 reports the correlation coefficients. To obtain correlation coefficients from
the regression, I scale both the client funds’ returns and long-short portfolio returns
to have the same standard deviation, e.g., the std. of the market portfolio. Consistent
with the hypothesis, returns of client funds and returns of the predatory long-short

portfolio exhibit a significantly negative correlation. The average correlation across
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different specifications is -0.33. The negative correlation suggests that the client funds’
performance drop is indeed through the trading strategy leakage channel.

5 A Model with Strategic Interaction

My previous analyses suggest that past released trades can lead to trading strategy
leakage, which has a negative impact on active funds. This section further addresses two
questions: how fund managers strategically respond in equilibrium, and what are the
market-wide implications of strategy leakage? I develop a model incorporating strategic
interaction between fund managers, who seek to deter strategy leakage, and outside

learners.

5.1 The model

A. Environment

The economy I analyze has infinite periods. In each period, an asset generates a payoff
d1 = Ojz + €141, )

where z; is a K-dim vector of asset characteristics, 8; is a vector of loadings on character-
istics, and €1 is an unpredictable component. I assume z; ud; N (0, Ix), where Ix is an
identity matrix. The vector of loadings, 6;, evolves in an AR1 process:

0r = p0; 1+ /1 — p*us. (8)

Without loss of generality, I assume wu; N (0, K~1Ig) such that E(0,6;) = E(uju;) = 1.
The random variables u;, 2, and €;41 are mutually independent to each other.

B. Players

There are three players trading assets in the economy: strategy developer, outside learner,
and noise trader. In each period t, both the developer and the learner can observe
characteristics z;, but only the developer knows ;. The learner tries to learn 6; from the

developer’s past trades. The demand functions for the developer (D7) and the learner
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(D}) are given by

Df _ ﬁéztA— Pt’ Di _ ’Yt/ZtA— Pt’ )
where 3; and ~; are trading strategies that are optimally chosen by the developer and
the learner, p; is the asset price determined by market clearing, and A is a constant
parameter.’’ Because I normalize E(6;6;) = 1 in Eq.(8), which implies I}gr;o 0,6: =1,1
then assume both the developer and the learner choose strategies 3; and ~; from the
space {0 : 0’6 = 1}, i.e., with the same scale to the fundamental loadings. The noise
trader’s demand is given by ¢; YN (0, Ué). I normalize the asset supply to zero. The
market clearing condition is

Df +Dj+& =0, (10)
which implies the asset price:
/ /
pr = Brzt + '7521‘ + )U:t. (11)

Given the trading strategies, the expected profits before the realization of z; for the
developer (IT¢) and the learner (IT}) are given by

0,8 — 0y, Aok

1Y =E[(dps1 + Pr+1 — Pt)D‘ti] = +

2A 4’ (12)
I I 0;v: — 0.8 )wg
I, = Et[(dtﬂ + Prr1 — Pt)Dt] = o + 1

C. Strategic interactions

To study the strategic interactions, let’s first consider the learner’s decision. The learner
chooses the trading strategy, v, based on an updated belief about the developer’s strategy
by optimally combining prior belief and new observations. Specifically, at each period ¢,
the learner incrementally observes the developer’s trades in period ¢ — 1, which provides
a noisy estimation on 3_1:

Bi1=PBi_1+é_1. (13)

10) is the risk-aversion coefficient multiplied by the variance of payoff for mean-variance investors.
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The error term é;_; comes from the process of uncovering strategies, e.g., regressing the

, c .. A did. _ Al A
developer’s trades on characteristics. I assume &; '~ N (0,02K ' Ix) (such that &é; ~ 0?2

when K is large) and it is independent to other random variables. The learner updates
her beliefs by combining prior beliefs and the new estimate 3;_1:

by = (1—7r)b1+7iBi1, (14)

and then chooses the trading strategy by normalizing (i.e., to satisfy v; € {0 : 6’0 = 1}):

b;

Yt = *b;bt'

The learner optimally chooses the learning rate, r}, to maximize the expected profits in

(15)

future periods. I lay out the optimization problem in detail in Section 5.2.

Next, let’s turn to the developer’s decision. The developer knows that the learner is
trying to mimic his strategy. Thus, he may strategically respond. Note that, without the
learner, the optimal trading strategy for the developer is 3; = ;. When strategic incentive
arises, the developer may (i) reduce the speed of updating strategy by relying more on
his past strategy 3;_1, or (ii) add random noise to his trade or strategy. To accommodate
these two potential strategic behaviors, I consider the following decision-making rule for
the developer:

Bt = x; 0 + yi Br—1 + njvy, (16)

where (x},y}, n}) are decision variables optimally chosen by the developer to maximize
future expected profit subject to 3; € {6 : 8’6 = 1}, and the random component,
o id, N (0, K11 k), is independent to other random variables. In this formulation, adding
random noise v; to the strategy is equivalent to adding random noise v;z; to trades.

5.2 Equilibrium characterization

I consider a stationary equilibrium, in which the optimal decision variables, r; for the
learner and (x},y;, n;) for the developer, are invariant over time. Note that under such
an equilibrium, the trading strategies 3; and = still keep changing, only the underlying
rules of strategy evolution remain constant. In a stationary equilibrium, the expected
profits defined in Eq.(12) are also constant and can be calculated using the following
lemma.
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Lemma 1. Given (¢, xt,y, 1) = (r,x,y,n) for Vt, the restriction 3y € {0 : 0’6 = 1} implies
n?=1- (Hﬂ) x% — y?, and we have

T—py
e x
7y
. X _ _
e = Ty T : (fO)r) Y
o - r(1+0? 2 —r —r
\/T + Z_—rr [Algp(l—r) + (1 o A)lzy(l—r)]
_ %
where A = (1—py)(p—y)’

Based on Lemma 1, a stationary equilibrium is characterized by (r*, x*,y*, n*) such
that:

 Given the learner’s decision, r = r*, the developer optimally chooses (x*, y*, n*) to
maximize his expected profits (proportional to 8;3; — 8;7;) in each period:

o
(oytom) = argmax |1+ (1102) 15(1)” (1-1)
1= r Oe r —r —r
<oy D 2 (A (1 )

s.t. (H_py) Py nt=1
1=py

* Given the developer’s decision, (x,y,n) = (x*,y*,n*), the learner optimally chooses

r* to maximize her expected profits (proportional to 8}+;) in each period:

o

r* = argmax - Lp7r)
0<r<1 r(14-0¢ 1- 1—
TR 2 A (- )

Due to the strategic interaction between the two players, the optimal trading strategy
for the developer may deviate from 6;, i.e., y* or n* is not zero. The trade-off is that
although such deviation reduces the profit directly from the payoff, it can deter revealing
the true strategy to the learner, which benefits the developer by trading at a better price.
One key result of the developer’s optimal decision is as follows.

Proposition 1. For any 0 < r < 1, the developer’s best response satisfies n* = 0.
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Recall that the developer can strategically deviate in two ways: (i) slow down updating
(y > 0) and/or (ii) combine a random strategy (n > 0). Proposition 1 states that combining
a random strategy is never optimal. The intuition is that combining a random strategy will
not create estimation bias for the learner while slowing down updating will. Therefore,
conditional on the same cost of the deviation, the developer benefits more by tilting
toward the past strategy, compared to combining a random strategy. Figure 7 illustrates
this point. The x-axis is the developer’s expected dividend payoff, E[6;3], and the y-axis
is the learner’s expected dividend payoff, E[0;v]. The blue dotted line represents the
developer’s deviation by combining a random strategy, and the red solid line is for tilting
toward the past strategy. The plot shows that conditional on the same level of E[6]3],
i.e., same cost, tilting toward the past strategy is always more effective in reducing the
learner’s expected dividend payoff, which benefits the developer more.

Given that the developer’s best response satisfies n* = 0, the restriction (%) x? +
y?> +n? = 1, derived from B; € {0 : 8’6 = 1}, implies that the developer only needs
to choose y, with x to be determined by the restriction given the value of y. Therefore,
the developer’s best response can be effectively summarized by a policy function y =
P4(r;p,0.). Similarly, let r = P!(y;p,0.) denote the learner’s policy function. The

equilibrium implies the fixed point of the following system:

yr o= Pd(r*;p,(rg), (19)
= Pl(y*;p,ag). (20)

Figure 8 plots the policy functions, Pd(r; p,0.) and P! (y;p,0.), and the equilibrium
represented by their intersection point. There are several findings. First, Pd(r; 0,0e)
exhibits an inverted U-shape, i.e., y achieves the highest value when r is in the middle
and y approaches zero when r is near the two ends. This reflects the developer’s trade-off
between maintaining profitability vs. deterring learning. When the learner’s r is around
an ideal level (i.e., neither too small nor too large), the developer’s motive of deterring
learning dominates, and it suggests a larger deviation relative to 6; is optimal. On the
contrary, when the learner’s r is extreme (i.e., close to zero or one) and less effective for
learning, the developer’s motive of maintaining profitability dominates, and it suggests a

smaller deviation relative to 6; is optimal.

Second, P!(y;p,0.) is increasing in y. The intuition is that the learner chooses the
learning rate to balance the trade-offs between more timely information (larger r) vs.

more robust estimation (smaller r). When y is larger, the developer’s strategy is more
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persistent, which mechanically reduces the timeliness and increases the robustness of
the learner’s estimation. Therefore, to balance, the learner tends to choose a larger r as a
response to a larger y.

Third, both Pd(r; p,0.) and P! (y;p,0.) tend to increase when the learner’s precision
o, !increases. This is because higher precision increases the developer’s need for deterring
learning and also allows the learner to put more weight on the recent information. Finally,
the intersection suggests the uniqueness of the equilibrium. And the equilibrium y* and

1

r* tend to increase as the learner’s precision ¢, * increases.

5.3 Calibration

I set baseline parameters for numerical comparative statics. I interpret one period in
the model as one quarter. There are four parameters to be calibrated: p, A, oz, and o,.
First, p is the AR1 coefficient of 8;, which captures the persistence of the economy. Giglio,
Kelly, and Kozak (2024) estimate a rich affine model of equity portfolios and obtain
the annual persistence of state-space dynamics as 0.72 (Table II, factor PC1). I calibrate
o = 0.721/4 = 0.921.

Second, A and oz are parameters related to asset demands. Because proportionally
changing A and o7 only has a scaling effect in the model, WLOG, I normalize A to be one.
Given A = 1, the proportion of noise trading volume to total trading volume is

E(|D{|) +E(|Dj]) + E(|¢:]) o2 —EB)] + o

Bloomberg Intelligence estimates that retail trading volumes account for around 25% of
the total trading volumes in the U.S. equity market at the end of 2021 (Financial Times,
2021). Therefore, under a common interpretation that retail trading are proxies for noise
trading, I calibrate oz = 0.344.

Finally, o. is the standard deviation of the error term when learning trading strategies.
For example, a higher disclosure frequency corresponds to a lower ¢, (or a higher o, !) as
outsiders can learn better with more granular observations. The correlation between the
developer’s strategy 3; and its noisy estimation S3; is

1

VA +o2)

I calibrate o, using a bootstrap method to fit trading strategies based on the Abel Noser

Corr(Bjzt, Bizt) = (22)
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data. Specifically, similar to the exercise in Section 4, I first use decision trees to estimate a
trading strategy—by fitting trades with stock characteristics—as 3; in Eq.(22). To calibrate
0. under a given disclosure frequency, e.g., monthly, I then collapse the trades to the
given frequency, generate bootstrapped samples by randomly drawing observations with
replacement, and estimate trading strategies from the bootstrapped samples as 3; in
Eq.(22). Finally, by matching the correlations, I obtain ¢, ! to be 0.304, 0.564, and 1.126
for quarterly, monthly, and weekly disclosure frequency, respectively. I summarize the
calibration results in Table 11.

5.4 Comparative statics

I conduct comparative statics analyses to explore the implications of the learning precision,

o1

, on the equilibrium decisions and outcomes. An increase in ¢, ! captures the change
that facilitates the learner to learn about the developer’s strategy, for example, increasing

the frequency of mandatory portfolio disclosure.

5.4.1 Effects on the trading strategies

Figure 9 shows equilibrium decisions (i.e., developer’s x, y, n and learner’s r) as functions
of o, 1, for various values of p. The patterns are similar across the four panels. First, n* is
always zero, meaning that adding noise is not an optimal response for the developer to

deter strategy leakage, as Proposition 1 states. Second, as o, !

increases, the developer
reduces the speed of updating trading strategy toward 6; (i.e., x* decreases) and increases
the stickiness to the last-period strategy (i.e., y* increases). This suggests that the
developer impedes the learner’s learning by sluggish updating. Third, as p increases
(from panel A to panel D), the magnitude of decrease in x* and increase in y* as o, !
changing is larger. This is because higher p suggests the process of 6; is more persistent,
and sluggish updating is less costly for the developer. Finally, the equilibrium learning

1

rate r* increases as ¢, = increases. Intuitively, the learner puts more weight on the recent

signal when the signal’s precision is higher.

Figure 10 provides a visualization of the evolution of trading strategies in equilibrium.
Each point represents a strategy (as a strategy is defined as a vector), and each path
represents a process of strategies, e.g., 8;, 3, and ;. To plot the figure, I first set the
process of 6; as given and then generate the paths of 3; and ~; based on the developer’s
and learner’s equilibrium decisions. Panel A corresponds to the situation with a low

learning precision, and panel B is for a high learning precision. As the figure shows,
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when the precision is low, the developer’s strategy (3;) tracks more closely to the true
strategy (0;), as the developer anticipates that the learner cannot learn the strategy very
fast. When the precision is high, the developer strategically avoids tracking 8; too closely
and makes his strategy path more slow-moving. At the same time, the learner can follow
the developer more closely due to the high precision. However, there is still a distance
between the learner’s strategy (v:) and the true one (8;) because of the developer’s

strategic response.

Overall, the analysis suggests that an increase in the learning precision (e.g., due
to an increase in disclosure frequency) can reduce the incentives for funds to develop
new strategies, as they have stronger motives for strategically responding to the trading
strategy leakage.

5.4.2 Effects on the price informativeness

To analyze market-level implications of trading strategy leakage, I focus on the payoff-
price sensitivity, i.e., how the equilibrium price can reflect fundamental information,

which is the coefficient x; by regressing dividend payoff d;,1 on equilibrium price p;:
dt—l—l = Ko + K1Pt + €441, (23)

The payoff-price sensitivity is given by

Cov(dyy1, E[0;3:] + E[0]~
_ Cov(di1,pr) _ E[6;8:] + E] tAZiZ (4)

Var(pe) 1 L E(gjm] + 5

K1

Intuitively, the payoff-price sensitivity is positively related to the expected inner product
between fundamental loadings, 8;, and their strategies for the developer (E[6:3;]) and
the learner (IE[0;¢]), as price incorporates their information through trading. The payoff-
price sensitivity is negatively related to the strategy similarity between the developer and
the learner (E[B¢v;]) and the amount of noise trading (Ué) because these factors increase
the variance of the price.

Figure 11 plots the components E[0;3;] (panel A), E[6+v:] (panel B), E[3:] (panel C),
and the payoff-price sensitivity (panel D) as functions of the learning precision ¢, !. The
solid line represents equilibrium outcomes with strategic interaction, while the dashed
line is for the case without strategic interaction by assuming the developer always plays
Bt = 0. There are several findings. First, in equilibrium, E[6;3;] decreases when ¢, 1

increases. This is because the developer strategically reduces the speed of updating his
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Lincreases.

strategies when the learner can learn faster. Second, [E[0;:| increases when o,
As a comparison, if the developer always plays the true strategy 6y, the learner’s IE[6;~;]
will increase even more. This suggests that the developer’s sluggish updating is effective
in the sense of reducing E[6;v:] relative to the case without strategic response. Third, the
strategy similarity between the developer and the learner, E[Bi:], increases when o, 1
increases. Moreover, the increase is larger relative to the case without strategic response.
This is because the developer’s strategy becomes more persistent due to sluggish updating,
and the learner is more likely to recover 3; based on the developer’s past trades.

L increases. On the

Finally, panel D plots how payoff-price sensitivity changes as o,
one hand, the increase in [E[0;:] tends to improve the payoff-price sensitivity, as the
learner can learn more about fundamental information and affect the price via trades.
On the other hand, the decrease in E[0;3;] due to the developer’s strategic behavior and
the increase in E[3y:] tend to reduce the payoff-price sensitivity. Putting together, the
numerical solutions show that the overall effect can be negative in a wide range, i.e.,
better learning precision induces worse payoff-price sensitivity. As a comparison, when
there is no strategic behavior, the payoff-price sensitivity will be monotonically increasing
as learning precision increases. This result highlights the unintended consequence of
frequent disclosure on the market level—due to the incentive of alleviating the impact
from strategy leakage, the asset price can become less informative in terms of the payoff-

price sensitivity.

5.5 Empirical test of the counterintuitive model implication

My model produces a counterintuitive implication: the strategy developer deters strategy
leakage not by adding random noise, but by sluggish updating. I empirically test the
implication based on the released trades of client funds.

Sluggish updating implies higher persistence in the trading strategies. To measure
persistence, I estimate trading strategies of client funds year by year and compute the
correlations of the uncovered strategies across adjacent years. To align with the model,
I aggregate client funds into a representative agent when calculating these strategy
correlations.

Figure 12 plots the time series of the trading strategy persistence. The correlations
are always above 0.8 in the figure, suggesting that, on average, trading strategies are
quite persistent. More importantly, consistent with the model implication of sluggish
updating, there is a steady rise in persistence following the data release. The year-over-
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year correlation increases from 0.85 in the pre-period to 0.93 by the end of the sample.
Overall, this test confirms the key implication of my model.

6 Additional Results

I present additional results in this section. First, I examine whether client funds quit Abel
Noser after the release of data. Then, I examine what happens after two reverse shocks:
(i) Abel Noser removed fund numeric codes from the data in 2012, and (ii) Abel Noser
completely stopped providing the data in 2017.

6.1 Client funds’ other response

A potential response for client funds is to quit Abel Noser. To examine whether this is a

major response, I estimate the changes in quit rates using the following regression:!!

ISEYldY&ZT’i’y = ‘30 + ,31 X I[{Year=2002} + ,BZ X H{Year>2002} + Bngear FE + €iy- (25)

The dependent variable, IsEndYear;,, equals one if year y is the last year for fund 7 being
Abel Noser’s client, and zero otherwise. I add the beginning-year fixed effects to control
for ages. The coefficient 81 (B2) captures the change in quit rate during 2002 (from 2003
to 2007) relative to the rate during the pre-period.

The estimation results are in Appendix Figure Al. Although there was a slight increase
in the quit rate, around 3 percent, in the event year, this increase is not statistically
significant. This could be because, given that past trades were already released, the
marginal benefits from quitting Abel Noser could be small. Additionally, it may suggest
that client funds have a strong demand for Abel Noser’s services, for example, to
demonstrate to their investors about “best execution” for their transactions. In short,

there is no evidence that quitting Abel Noser is a major response for client funds.

6.2 Reverse shocks

I examine what happens after reverse shocks. I consider two events: (i) Abel Noser
removed fund numeric codes from the data in 2012, and (ii) Abel Noser completely

To calculate the quit rate with the denominator equal to the number of clients in that year, fund i
is included in the sample only during its period of being a client. This is to ensure that the number of
observations in year y equals the number of clients in that year.
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stopped providing the data in 2017. Similar to the analysis in Section 3.3, I conduct the
following regression over the period 2002-2020:

ARy = o+ B1 X Liyear>2012} + B2 X Liyear>2017) + €t (26)

where AR; is the average differenced risk-adjusted fund return in month ¢ between the
treated and control groups. The treated group is the funds that became Abel Noser’s

clients in or after 2002. The control group is constructed via PSM.

Table 10 reports the estimated treatment effects. First, the effect due to removing fund
numeric codes in 2012 is insignificant. This could be because (i) outside investors can still
learn strategies using aggregate trades from client funds, as the exercise in Section 4.3,
or (ii) the event that Abel Noser leaked the linktable in 2011 mixes the effect since two
events are close to each other.

Second, the effect of completely stopping providing the data in 2017 is significantly
positive. For example, the client funds improved their FF3-alpha (CH4-alpha) by 7.4 (6.6)
bps per month with t-stat of 2.04 (1.89) after Abel Noser stopped providing data. The
positive effect of the reverse shock supports the causal interpretation. The afterward 6-7
bps of performance improvement, compared to the initial 36 bps of performance drop,

implies an irreversible hurt to these client funds.

7 Conclusion

This paper studies how disclosure affects fund performance and market efficiency via
a new channel: strategy leakage. I empirically identify strategy leakage by exploiting a
quasi-natural experiment in which Abel Noser Solutions, a trading-cost-analysis company,
began selling its clients” historical trading data with a one-year lag. Despite the one-year
lag in data provision, it reduces the performance of client funds by 36 bps per month for
years. By adopting a simple machine learning method and examining different disclosure
frequencies, I find that releasing monthly trades is a crucial cutoff, as uncovered strategies
can be statistically significant (or insignificant) in predicting client funds’ trades and
achieving predatory profits when the frequency exceeds (falls below) monthly.

To study how fund managers strategically respond in equilibrium and the market-
wide implications of strategy leakage, I develop a model incorporating the strategic
interaction between the strategy developer and the outside learner. Contrary to Huddart,
Hughes, and Levine (2001), the developer deters strategy leakage not via playing a
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random strategy but via sluggish updating. Consequently, when the learning precision
for the outsider increases, the persistence of the developer’s strategy increases, and the
price informativeness can decrease. Overall, my study highlights the limited role of
reporting delay and the unintended consequences of increasing disclosure frequency via

the channel of strategy leakage.
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Table 1: Summary statistics. This table presents the summary statistics for the matched mutual
fund sample of Abel Noser’s clients over the period of 1998 to 2007. I use MFLINKS tables to
match fund returns from CRSP and fund holdings from the Thomson Reuters S12 database. Then,
I match the funds to their trades from the Abel Noser dataset by (i) fund names and (ii) comparing
cumulative trading to holding changes. Panel A presents the numbers of matched funds classified
by the beginning year they became Abel Noser’s clients. Panel B presents the balance test on fund
characteristics between the treated group (i.e., Abel Noser’s client funds) and the control group
(i.e., non-client funds). The control group is constructed via propensity score matching (PSM)
with 20 nearest neighbors.

Panel A: Number of matched funds

Beginning year of becoming Abel Noser’s clients # matched funds
1998-2001 39
2002 11
2003 19
2004 15
2005 32
>2005 35
Total 151
Panel B: Balance test on fund characteristics

Characteristics Treated Control Diff. t-stat
TNA ($ million) 2,141 2,480 -338 [-0.41]
Age (years) 11.103 11.472 -0.369 [-0.22]
Fund CH4 & (%) 0.344 0.212 0.133 [0.79]
Hscore: SZ 3.785 3.812 -0.026 [-0.45]
Hscore: BM 1.216 1.195 0.021 [0.19]
Hscore: MOM 2.662 2.688 -0.026 [-0.37]
Idio. volatility (%) 2.021 1.921 0.100 [0.51]
Turnover ratio 1.109 1.167 -0.058 [-0.38]
Expense (%) 1.412 1.412 0.001 [0.01]
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Table 2: Disclosure effect on client funds’ return. This table presents the difference-in-differences
analysis on fund returns around 2002, i.e., the year when Abel Noser started to sell its clients’
historical trading data. The sample period is from 1998 to 2007. In Panel A, the treated group is
the funds that became Abel Noser’s clients before 2002. In Panel B, the treated group (placebo)
is Abel Noser’s client funds but only includes the returns before their trading data is released
(the release date for a client fund is one year after it became a client). For both Panels A and B,
the control group is the non-client funds selected by propensity score matching (PSM). I estimate
propensity scores using logistic regression with fund characteristics of TNA, age, past alpha,
hscore_sz, hscore_bm, hscore_mom, idiosyncratic volatility, turnover ratio, and expense ratio. I
use k-nearest neighbors matching with k = 20. I report in this table the estimated coefficient
p1 of the following regression: AR; = Bo + B1 X Liyear>2002) 1 €1, Where the dependent variable,
ARy, is the average risk-adjusted fund return in month ¢ for the treated group minus that for the
control group. To obtain risk-adjusted fund returns, I estimate fund beta using 60-month rolling
regressions. Fund returns are before-expense and expressed in percentage points. t-statistics,
shown in brackets, are computed based on standard errors with Newey-West corrections of 12
lags (months). *, **, *** denote significance at the 10%, 5%, and 1% level, respectively.

Risk-adjusted fund returns

Excess return ~ CAPM alpha FF3 alpha CH4 alpha
Panel A: Impact on client funds
Treatment effect -0.385** -0.408** -0.305*** -0.338***
[-2.07] [-2.52] [-3.25] [-4.19]
Observations 120 120 120 120

Panel B: Impact on client funds before data release (placebo)

Treatment effect (placebo) -0.046 -0.029 -0.011 0.042
[-0.87] [-0.52] [-0.16] [0.61]
Observations 120 120 120 120
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Table 3: Alternative construction of control group. This table presents the results of robustness
tests using different methods of constructing the control group. I consider PSM with 10 or 50
nearest neighbors, single sorting on fund TNA (5 groups), and double sorting on fund TNA
and Age/Alpha/Turnover (5x5 groups) as alternative methods. The sample construction and
estimation procedure are the same as those in Table 2 Panel A, except for the way of constructing
the control group as indicated here. t-statistics, shown in brackets, are computed based on
standard errors with Newey-West corrections of 12 lags (months). *, **, ** denote significance at
the 10%, 5%, and 1% level, respectively.

Risk-adjusted fund returns

Control group Excess return ~ CAPM alpha FF3 alpha CH4 alpha
PSM: 50 nearest neighbors -0.325% -0.353** -0.274*** -0.274***
[-1.72] [-2.12] [-2.97] [-3.44]
PSM: 10 nearest neighbors -0.396* -0.467*** -0.378*** -0.399**
[-1.90] [-2.68] [-3.02] [-3.50]
Sort by TNA -0.392** -0.419** -0.331*** -0.345%**
[-2.19] [-2.31] [-3.88] [-4.39]
Sort by TNA & Age -0.376** -0.400** -0.321*** -0.325***
[-2.09] [-2.22] [-3.41] [-3.72]
Sort by TNA & Alpha -0.356* -0.417* -0.340*** -0.340**
[-1.78] [-2.20] [-3.89] [-4.16]
Sort by TNA & Turnover -0.267** -0.312** -0.297*** -0.300%**
[-2.08] [-2.12] [-3.99] [-4.05]
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Table 4: Triple-differences analysis. This table presents the triple-differences analysis on fund
returns exploiting client funds variation over the period from 1998 to 2007. I report the coefficients
from fund-month panel regressions: AR;; = Bo X Ifyear>2002) + B1 X Liyear>2002} X Lffund category} +
FE + €;;, where AR;; is client fund i’s CH4-adjusted fund returns in month ¢ minus the average
from the matched non-client funds. I consider the following variation in fund characteristics:
I1onger period} €quals one if, until the end of 2001, the period of a fund being Abel Noser’s client
is longer than the sample median, and zero otherwise. I ore stocks} €quals one if, until the end
of 2001, the number of stocks traded by a client fund is more than the sample median, and zero
otherwise. Leter skiny €quals one if the fund CH4 alpha in the pre-period is higher than the
sample median, and zero otherwise. t-statistics, shown in brackets, are calculated via bootstrap
with 500 replications. *, **, *** denote significance at the 10%, 5%, and 1% level, respectively.

Treated-minus-control CH4-adjusted fund returns

1) 2 3) 4) ®) (6)
L2002} -0.152 -0.176 -0.092
[-1.21] [-1.24] [-0.76]

H{EZOOZ} X II{longer period} -0.669*** -0.796™**
[-2.94] [-3.37]

II{22002} X II{more stocks} -0.476** -0.467**
[-2.18] [-2.13]
Li>0002) X Lipetter skint} -0.795%**  -(.815%**
[-3.65] [-3.75]
Observations 2,755 2,755 2,755 2,755 2,755 2,755
Fund FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes
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Table 5: Disclosure effect on trading return. This table presents the changes in client funds
dollar-volume-weighted risk-adjusted trading returns after Abel Noser started to sell data in
2002. The sample period is from 1999 to 2007. For each fund-month, I calculate the dollar-

volume-weighted risk-adjusted return as R'"¢ = (X Buy; x R’[‘ 1 +w]) /(¥ Buy;) — (¥ Sell; x
led+1,d+w])/(zj Sell;), where Buy; or Sell; is dollar trading volume for trade j, and R'[‘d+1’d+h] is

stock k’s cumulative risk-adjusted return over day [d + 1,d + h] with h = 5,10, 20. I report in this
table the estimated coefficient B; of the following regression: R = By + B; x I (year>2002} + €ts
where the dependent variable, RI"™, is the client funds’ average dollar-volume-weighted risk-
adjusted trading return in month ¢. Returns are expressed in percentage points. f-statistics, shown
in brackets, are computed based on standard errors with Newey-West corrections of 12 lags
(months). *, **, *** denote significance at the 10%, 5%, and 1% level, respectively.

Dollar-volume-weighted risk-adjusted trading returns

Horizon (h) Excess return ~ CAPM alpha FF3 alpha CH4 alpha
5 trading days -0.134** -0.212%** -0.179*** -0.187***
[-2.05] [-4.30] [-3.75] [-3.63]
10 trading days -0.323*** -0.422%** -0.386*** -0.394**
[-3.94] [-5.25] [-5.20] [-4.68]
20 trading days -0.482%** -0.604*** -0.508*** -0.528***
[-4.80] [-6.40] [-4.76] [-4.88]
Observations 108 108 108 108
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Table 6: Hedge funds’ predatory trading around the disclosure. This table presents the coeffi-
cients of regressing client funds’ following trades on hedge funds’ positions over the period from
1999 to 2003. I separately estimate for the long vs. short sides. The regression specification is
DTViiy1 = B X POSk + ¥1e1999,2000,2002,2003) 01 X POSkt X Lpyenr 1y + piy + k1. DT Vipiq is the
client funds’ aggregate buy or sell dollar volume on stock k in month t + 1, and I focus on the
client funds that joined Abel Noser before 2002, i.e., consistent with the treated group in the test
of fund returns. POSy; is the hedge funds’ aggregate dollar value of holding or short selling on
stock k at the end of the month t. I apply log(1 + x) transformation on both DTV ;1 and POSy;.
M,y is the stock-year fixed effects. For the long side, I calculate aggregate hedge fund holdings
(HFHD) based on the hedge fund list from Chen, Da, and Huang (2019). As hedge funds disclose
holdings on a quarterly basis, I only include the quarter-end months in the regression. For the
short side, I follow the literature to use short interest (SINT) as a proxy for hedge funds’ short
positions. All variables are winsorized cross-sectionally at the 1st and 99th percentiles. t-statistics,
shown in brackets, are double clustered at the stock and month levels. *, **, *** denote significance
at the 10%, 5%, and 1% level, respectively.

Client funds’ buy Client funds’ sell
HFHD 0.299*** SINT 0.106*
[4.69] [1.84]
HFHD x 1{1999} -0.080 SINT x ]I{]ggg} -0.076
[-1.01] [-1.11]
HFHD x ]I{ZOOO} -0.070 SINT x ]1{2000} -0.006
[-0.98] [-0.08]
HFHD x 1{2002} 0.252** SINT x I[{zooz} 0.216**
[2.27] [2.28]
HFHD X 5003 0.250** SINT x L2003 0.203**
[2.33] [2.32]
Observations 59,872 Observations 125,855
Stock x Year FE Yes Stock x Year FE Yes
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Table 7: Trading predictability of the uncovered strategies. This table presents the coefficients of
a stock-week panel regression to test the out-of-sample trading predictability of the uncovered
trading strategies from a machine-learning method. The testing period is from 2002 to 2007. The
dependent variable is a cross-sectional percentage rank (ranging from 0 to 100) on client funds’
aggregate net dollar volume in each week scaled by the past four-week average stock-level dollar
volume. The key explanatory variables, BuyScore and SellScore, are obtained from the Gradient
Boosting Regression Tree (GBRT) to predict client funds” following trades. To train the GBRT, I use
61 stock characteristics to fit client funds’ aggregate buy or sell trading volume. Hyper-parameters,
such as the number of layers, are determined by ten-fold cross-validation. I follow a real-time
training and testing procedure: (i) training data is provided with a one-year lag; (ii) I train GBRT
every quarter with a three-year rolling window; and (iii) after training, I input the most recent
stock characteristics to GBRT to predict client funds’ following trades. For better interpretability of
the regression coefficients, I scale BuyScore and SellScore by their full-sample standard deviations
to reflect the per-standard-deviation effect. t-statistics, shown in brackets, are double clustered at
the stock and week levels. *, **, *** denote significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3)

BuyScore 2.532%** 1.396*** 1.242%**
[10.98] [5.68] [4.60]

SellScore -3.107*** -1.517*** -2.120%**
[-12.86] [-5.05] [-5.82]

Observations 465,353 465,334 465,265

Week FE Yes Yes Yes

Stock FE Yes

Stock x Year FE Yes
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Table 8: Predatory portfolios based on the uncovered strategies. This table presents the weekly
abnormal returns following a predatory strategy of buying (selling) stocks that client funds are
predicted to buy (sell) over the period from 2002 to 2007. I drop small stocks based on the 20th
percentile of the market equity for NYSE stocks. BuyScore and SellScore are obtained from the
Gradient Boosting Regression Tree (GBRT) as described in Table 7. At the end of each week, I
sequentially sort stocks on BuyScore and SellScore into 5 x 5 portfolios, and long (short) stocks
in the group of high-BuyScore-low-SellScore (low-BuyScore-high-SellScore). EW (VW) indicates
equally weighted (value-weighted) in the portfolio formation. I regress the long-short portfolio
return on common factors and report the average abnormal returns, i.e., the intercepts. All
returns are expressed in percentage points. t-statistics, shown in brackets, are computed based on
standard errors with Newey-West corrections of 12 lags (weeks). *, **, *** denote significance at
the 10%, 5%, and 1% level, respectively.

Long-short portfolio abnormal returns (weekly)

Portfolio weight Excess return ~ CAPM alpha FF3 alpha CH4 alpha
EW 0.264** 0.300%** 0.275%** 0.212%**
[2.26] [3.19] [3.05] [3.27]
VW 0.289* 0.321** 0.284** 0.204**
[1.84] [2.22] [2.02] [2.04]
Observations 313 313 313 313
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Table 9: Returns of client funds vs. Returns of predatory portfolios. This table presents the
correlation coefficients from a monthly time-series regression of the treated-minus-control risk-
adjusted fund returns (i.e., AR; in Table 2) on the returns of the predatory long-short portfolio (as
described in Table 8) over the period from 2002 to 2007. For better interpretability of the regression
coefficients, I scale both the client funds’ returns and predatory portfolio returns such that their
standard deviations are equal to that of the market portfolio. t-statistics, shown in brackets, are
computed based on standard errors with Newey-West corrections of 12 lags (months). *, **, ***
denote significance at the 10%, 5%, and 1% level, respectively.

Client funds’ risk-adjusted returns (relative to the control group)

Excess return CAPM adj. FF3 adj. CH4 adj.
Predatory portfolio (EW) -0.538*** -0.322%** -0.303** -0.338**
[-5.73] [-2.72] [-2.21] [-2.59]
Predatory portfolio (VW) -0.551*** -0.488*** -0.440*** -0.464***
[-8.19] [-6.04] [-5.29] [-5.67]
Observations 72 72 72 72
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Table 10: Reverse shocks. This table presents the difference-in-differences analysis on fund return
exploiting two reverse shocks: (i) Abel Noser removed fund numeric codes from the data in 2012,
and (ii) Abel Noser completely stopped providing the data in 2017. The sample period is from
2002 to 2020. The regression specification is ARy = Bo + B1 X Ljyear=2012) + B2 X Lfyear=2017} + €t/
where ARy, is the average risk-adjusted fund return in month ¢ for the treated group minus that
for the control group. The treated group is the funds that became Abel Noser’s clients in or after
2002. The control group is constructed via PSM with 20 nearest neighbors, i.e., the same procedure
as in Table 2. I report the coefficients f; and B, which capture the treatment effects. Fund
returns are before-expense and expressed in percentage points. f-statistics, shown in brackets, are
computed based on standard errors with Newey-West corrections of 12 lags (months). *, **, ***
denote significance at the 10%, 5%, and 1% level, respectively.

Treated-minus-control risk-adjusted returns

Excess return =~ CAPM alpha FF3 alpha CH#4 alpha
Liyear>2012} 0.027 0.031 0.016 0.020
[0.44] [0.48] [0.24] [0.30]
Liyear>2017} 0.068* 0.110%** 0.074** 0.066*
[1.93] [2.72] [2.04] [1.89]
Observations 228 228 228 228
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Table 11: Parameter calibration. This table presents the parameter calibration of the model. p is
the AR1 coefficient of 6;, which captures the persistence of the economy states. A is the scaler
in the demand equations of the developer and the learner. ¢ is the standard deviation of noise
trading. o, (0, 1) is the standard deviation of the error term when learning trading strategies
(learning precision) for the learner.

Variable Calibration method Value
1Y persistence of state-space dynamics (Giglio, Kelly, and Kozak, 2024)  0.921
A normalize to one 1.000
ord retail / total trading volumes ~ 25% (Financial Times, 2021) 0.344
0, ! (quarterly) ML method and bootstrap 0.304
o, ! (monthly) ML method and bootstrap 0.564
o, ! (weekly) ML method and bootstrap 1.126
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Figure 1: Time series of disclosure effect on client funds’ return. This figure plots the time series
of coefficients from the difference-in-differences analysis on Carhart-four-factor-adjusted fund
returns. Period 0 in x-axis corresponds to 2002, i.e., the year when Abel Noser started to sell its
clients” historical trading data. The treated group is the funds that became Abel Noser’s clients
before 2002. The sample construction and estimation procedure are the same as those in Table 2
Panel A, except here the regression specification is AR; = Y5, By x T (year 1} T €t I plot the time
series of estimated coefficients {f;} benchmarking period I = —1 as zero. The vertical dashed
line splits the pre- and post-periods. The vertical bars around point estimations represent 95%
confidence intervals. The standard errors are calculated with Newey-West corrections of 12 lags
(months).
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Figure 2: Time series of disclosure effect on client funds’ return (placebo). This figure plots
the time series of coefficients from the difference-in-differences analysis on Carhart-four-factor-
adjusted fund returns. Period 0 in x-axis corresponds to 2002, i.e., the year when Abel Noser
started to sell its clients” historical trading data. The treated group (placebo) is Abel Noser’s
client funds but only includes the returns before their trading data is released (the release date
for a client fund is one year after it became a client). The sample construction and estimation
procedure are the same as those in Table 2 Panel B, except here the regression specification is
ARy =Y5 B xT {year 1} T €t. I plot the time series of estimated coefficients {§;} and benchmark
period | = —1 as zero. The vertical dashed line splits the pre- and post-periods. The vertical bars
around point estimations represent 95% confidence intervals. The standard errors are calculated
with Newey-West corrections of 12 lags (months).
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Figure 3: Time series of disclosure effect on trading return. This figure plots the time series
of coefficients by regressing client funds’ average 10-day trading returns on zero-one indicators
of years. The sample construction and estimation procedure are the same as those in Table 5,
except here the regression specification is R/ = y>_ . B x Liyear 1y + €. 1 plot the time series of
estimated coefficients {;} and benchmark period | = —1 as zero. The vertical dashed line splits
the pre- and post-periods. The vertical bars around point estimations represent 95% confidence
intervals. The standard errors are calculated with Newey-West corrections of 12 lags (months).
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A: Long side B: Short side

[ ]

i B

1999 2000 2001 2002 2003 1999 2000 2001 2002 2003

| F | I

Figure 4: Hedge funds’ predatory trading around the disclosure. This figure visualizes the
estimation in Table 6 with panel A (panel B) for the long side (short side). I normalize the
coefficients of 2001 (i.e., one year before Abel Noser started to sell data) to zero as benchmarks.
The vertical dashed line splits the pre- and post-periods. The vertical bars around point estimations
represent 95% confidence intervals. The standard errors are double-clustered at the stock and
month levels.
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A: Net trading volume and MA10-to—MAZ20 ratio B: Net trading volume and MA15-to—MASO ratio
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Figure 5: Uncover trading strategy: Golden (Death) Cross. This figure shows an example of
examining whether client funds are employing the Golden (Death) Cross trading strategy;, i.e.,
buy (sell) stocks if a short-term moving-average price crossover up (down) through a long-term
moving-average price. I sort stocks by the ratio of the short-term and long-term moving-average
prices at the end of each week and examine the net trading volume from client funds in the
following week. The client funds” weekly net trading volume is scaled by the past four-week
average stock-level dollar volume and displayed in percentage points in the y-axis. In panel
A (B), the sorting variable in the x-axis is the ratio of 10-day-over-20-day (15-day-over-30-day)
moving-average prices. The dots are the average net trading volume within each bin. Bins are
evenly spaced over the range from 0.9 to 1.1. The lines are polynomial fits with an order of three.
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A: Trading predictability B: CH4 alpha of predatory portfolios (weekly)
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Figure 6: Disclosure frequency and strategy leakage. This figure shows how disclosure frequency
affects trading strategy leakage. In panel A, I examine the out-of-sample trading predictability
under different disclosure frequencies of client funds’ portfolios. The sample period, training-
testing scheme (e.g., three-year rolling window, quarterly update, and a one-year lag), and
regression specification are the same as in Table 7. The only difference is that client funds’ trades
are observed in different frequencies when training GBRT to backout trading strategies. Panel A
plots the coefficient difference, Buyscore — Bseiiscore, With Week FE and Stock x Year FE, i.e., the
specification in Table 7 Column (3). The vertical bars around point estimations represent 95%
confidence intervals. In panel B, I examine the abnormal returns based on trading prediction
under different disclosure frequencies. The sample period, sample construction, and portfolio
formation are the same as in Table 8. The only difference is that BuyScore and SellScore are from
the models that are trained under different frequencies of trades. Panel B plots the weekly CH4
alphas from long-short portfolios with equally-weighted stocks. The vertical bars around point
estimations represent 95% confidence intervals. In panel A, the estimations are from stock-week
panel regressions, and the standard errors are double clustered at the stock and week levels. In
panel B, the estimations are from time-series regressions, and I report the Newey-West standard
errors with 12 lags (weeks).
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Figure 7: Strategic deviation: Adding noise vs. Sluggish updating. This figure illustrates the
developer’s trade-off analysis for each type of strategic deviation: adding noise vs. sluggish
updating. The x-axis is the developer’s expected dividend payoff, E[0]3;], reflecting the cost of
the strategic deviation, and the y-axis is the learner’s expected dividend payoff, [E[0}~;], reflecting
the benefit of the strategic deviation. The blue dotted line represents the case of adding noise (i.e.,
n > 0 and y = 0), and the red solid line is for sluggish updating (i.e., ¥ > 0 and n = 0). I draw the
lines by varying the developer’s strategy and considering the optimal learning rate for the learner
at each point. I set p = 0.921 and 0, ! = 0.5.
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Developer's policy function (under low precision)
—— Learner's policy function (under high precision)
0.8 Learner's policy function (under low precision)
---- Equilibrium path

Figure 8: Best responses and equilibrium. This figure plots the developer’s and the learner’s
policy functions and the equilibrium generated by their intersection. The x-axis is the learner’s

decision variable r, and the y-axis is the developer’s decision variable y (note that Proposition 1
shows n* = 0 and x is uniquely determined by the constraint (%) x? 4+ y? = 1 given the value
of y). The blue line represents the developer’s policy function mapping from r to y, and the red
line represents the learner’s policy function mapping from y to r. The black points indicate the
equilibrium, and the black dotted line shows the equilibrium path when the learner’s precision
0, ! changes. I set 0, ! = 0.5 for the case of high precision, 7, ! = 1/3 for the case of low precision,

and p = 0.921.
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A. p=0.921 (baseline) B.p=0.8

Figure 9: Equilibrium decisions as functions of the learner’s precision. This figure plots the
developer’s decision variables, x,y, n, and the learner’s decision variable, r, as functions of the
learner’s precision, o, L Iset p = 0.921,0.8,0.9,0.95 in Panel A, B, C, and D, respectively.
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A. Low precision B. High precision
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Figure 10: An illustration of the evolution of trading strategies. This figure visualizes the
evolution of the trading strategies, including the true strategy 6; (black line), the developer’s
strategy B; (blue line), and the learner’s strategy +; (red line) under low or high learning precision
o, 1. 1 set the dimension K = 3 and plot their first two elements in the figure (recall that 6;, 3,
and ~; are vectors with unit length). To generate the strategy paths, I first set the process of 6;
as shown in the figure. Then, I generate the paths of 3; and ~; based on the developer’s and
learner’s equilibrium decisions. I set &; to zero to reflect the average path of the learner’s strategy.
Iset 0,1 = 0.2 for the case of low precision, 0, 1 = 1 for the case of high precision, and p = 0.921.
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Figure 11: Equilibrium outcomes as functions of the learner’s precision. This figure plots the
developer’s expected dividend payoff E[0]3;] (in Panel A), the learner’s expected dividend payoff
E[6]v¢] (in Panel B), the inner product between the two players’ strategies E[3,;] (in Panel C),
and the payoff-price sensitivity (in Panel D) as functions of the learner’s precision, o, !. The solid
line represents equilibrium outcomes with strategic interaction, while the dashed line is for the
case without strategic interaction by assuming the developer never deviates from the true strategy,
ie, B =0; Iset A =1, 0; = 0344, and p = 0.921.

57



1.00

0.95 A

0.90 A

0.85 A

0.80 A

0.75 A

0.70 T T T T T T T T
2000 2001 2002 2003 2004 2005 2006 2007

Figure 12: Client funds’ trading strategy persistence. This figure plots the time series of the
correlations of trading strategies between the current year and the previous year for the aggregate
client funds. I estimate trading strategies as a function, f(X), mapping stock characteristics X
to trades. To calculate the correlations of trading strategies, first I use the Gradient Boosting
Regression Tree (GBRT) to fit aggregate buy or sell trading volumes with (past) stock characteristics
year-by-year. The sample construction and estimation procedure are similar to those mentioned in

Table 7, but here I estimate on a year-by-year basis instead of using a rolling window. Let f;my (X)

and fyse” (X) denote the fitted trading strategies in year y for buy and sell trades, respectively. I
calculate the trading strategy correlation across two adjacent years using (Corr [fyb Y(X), fybfyl (X)]+
Corr| ;ell(X), ;e_lll(X)])/ 2, where I randomly draw X from the sample, i.e., to maintain the
correlation structure among stock characteristics. The vertical dashed line splits the pre- and

post-periods.
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Appendix for “The New Transparency Trap: Machine

Learning and the Reverse-Engineering of Strategies”

Xudong Wen

A Matching Abel Noser data to other databases

I match Abel Noser clients to funds in Thomson Reuters/CRSP by jointly considering (i)
names and (ii) the similarity of trading behavior. The procedure proceeds as follows.

First, I generate a list of potential matches by performing fuzzy name matching
between Abel Noser client names (variable manager and reportedmanager) to fund names
in CRSP (variable fund_name, mgmt_name, and mgr_name) as well as in Thomson Reuters
(variable fundname in the s12names table). The purpose of this step is to identify candidate
pairs for further refinement. To ensure inclusivity at this stage, I apply a relatively low
threshold for fuzzy matching and retain all pairs with a name match, for example, a
match is recorded if reportedmanager in the Abel Noser data and mgmt_name in CRSP are
similar.

Second, I refine the set of matched pairs by assessing the similarity of their trading
behaviors. Specifically, let ASZE N denote the quarterly share changes, as reported by
Thomson Reuters, for fund i in quarter ¢, and stock k, and let AS]‘.?thk denote the cumulative
share changes from Abel Noser data for client j in quarter t and stock k. I compute a
percentage deviation score for each stock as ]ASft]/\,i - ASZE N/ \ASZTtF N
considered a match, I require that at least 80% of stocks have deviation scores below 10%

|. For a pair to be

or at least 60% of stocks have deviation scores below 1%. Applying this criterion yields a
set of 91 matched mutual funds.

Finally, I supplement the matched list by adding funds with almost exactly matched
names, defined as cases where both variables manager and reportedmanager can be matched
with a fuzzy-matching score above 95 (a perfect match will score 100). Incorporating
those funds allows me to study clients’ strategic behaviors of submitting orders to Abel
Noser. This step adds 60 matched mutual funds, resulting in a final total of 151 matched

mutual funds.



B Characteristics list

Table A-1 provides the list of characteristics used in the machine-learning exercise of uncovering trading strategies.

Table A-1: Characteristics list

No.  Variable Label Description

1 sz size log(last-month market capitalization)

2 ret_ 1w past-1-week cumulative return cumulative return in the past one week

3 ret 2w past-2-week cumulative return cumulative return in the past two weeks

4 ret 4w past-4-week cumulative return cumulative return in the past four weeks

5 ret_ 8w past-8-week cumulative return cumulative return in the past eight weeks

6 ret_ 12w past-12-week cumulative return cumulative return in the past twelve weeks

7 dolvol 1w past-1-week total dollar volume log(1 + sum of dollar volume in the past one week)

8 dolvol 2w past-2-week total dollar volume log(1 + sum of dollar volume in the past two weeks)

9 dolvol 4w past-4-week total dollar volume log(1 + sum of dollar volume in the past four weeks)

10 turnover_1w  past-1-week average turnover average of turnover ratios in the past one week

11 turnover 2w  past-2-week average turnover average of turnover ratios in the past two weeks

12 turnover 4w  past-4-week average turnover average of turnover ratios in the past four weeks

13 baspread_1w past-1-week average bid-ask spread  average of bid-ask spread (divided by the middle price) in the
past one week

14 baspread 2w  past-2-week average bid-ask spread = average of bid-ask spread (divided by the middle price) in the
past two weeks

15 baspread 4w past-4-week average bid-ask spread = average of bid-ask spread (divided by the middle price) in the
past four weeks

16 amihud_ 1w  past-1-week average Amihud ratio average of Amihud ratios in the past one week

17 amihud 2w past-2-week average Amihud ratio average of Amihud ratios in the past two weeks

18 amihud 4w  past-4-week average Amihud ratio average of Amihud ratios in the past four weeks

(continued)



(continued)

No. Variable

Label

Description

19 beta_mkt

20 beta_smb

21 beta_hml

22 beta_mom
23 bm

24 dm

25 cp

26 sp

27 ep

28 roa

29 roe

30 agr

31 meanrec
32 chgrec

33 chgfeps_ltg0

market beta

SMB beta

HML beta

MOM beta
book-to-market ratio
debt-to-market ratio
cash-flow-to-price ratio
sales-to-price ratio
earning-to-price ratio
return on assets

return on equity

asset growth

mean analyst recommendations

change of analyst recommendations

change of EPS forecasts: LTG growth

estimate the four betas with daily returns and a one-year
rolling window

estimate the four betas with daily returns and a one-year
rolling window

estimate the four betas with daily returns and a one-year
rolling window

estimate the four betas with daily returns and a one-year
rolling window

book value of equity (SEQQ, or CEQQ + PSTKQ, or ATQ -
LTQ) divided by last-month market value of equity

debt value (DLCQ + DLTTQ) divided by last-month market
value of equity

cash flows (IBQ + DPQ, or IBQ if DPQ is missing) divided by
last-month market value of equity

sales (SALEQ) divided by last-month market value of equity
earnings (IBQ) divided by last-month market value of equity
earnings (IBQ) divided by last-quarter total assets (ATQ)
earnings (IBQ) divided by last-quarter book value of equity
annual percent change in total assets (ATQ)

mean analyst recommendations

change of analyst recommendations relative to the
past-one-quarter average

change of EPS forecasts relative to the past-one-quarter
average, FPI =0

(continued)



(continued)

No.  Variable Label Description
34 chgfeps_annl change of EPS forecasts: annual change of EPS forecasts relative to the past-one-quarter
average, FPI =1
35 chgfeps_qtrl  change of EPS forecasts: 1st quarter ~ change of EPS forecasts relative to the past-one-quarter
average, FPI = 6
36 chgteps_qtr2  change of EPS forecasts: 2nd quarter change of EPS forecasts relative to the past-one-quarter
average, FPI =7
37 chgfeps_qtr3  change of EPS forecasts: 3rd quarter  change of EPS forecasts relative to the past-one-quarter
average, FPI = 8
38 chgteps_qtr4  change of EPS forecasts: 4th quarter  change of EPS forecasts relative to the past-one-quarter
average, FP1 =9
39 ino_s12 institutional ownership (s12) shares held by s12 institutions divided by shares outstanding
40 chginosl2  change of institutional ownership quarterly change of the above institutional ownership (s12)
(s12)
41 ino_s34 institutional ownership (s34) shares held by s34 institutions divided by shares outstanding
42 chg ino_s34  change of institutional ownership quarterly change of the above institutional ownership (s34)
(s34)
43 ino_hf institutional ownership (hedge fund) shares held by hedge funds divided by shares outstanding
44 chg_ino_hf change of institutional ownership quarterly change of the above institutional ownership (hedge
(hedge fund) fund)
45 sint short interest short interest divided by shares outstanding
46 chg_sint change of short interest monthly change of short interest
47 gics_energy  industry indicator: energy equals one if two-digit GICS code = 10, and zero otherwise
48 gics_materi industry indicator: materials equals one if two-digit GICS code = 15, and zero otherwise
49 gics_indust  industry indicator: industrials equals one if two-digit GICS code = 20, and zero otherwise

(continued)



(continued)

No.  Variable Label Description
50 gics_condis  industry indicator: consumer equals one if two-digit GICS code = 25, and zero otherwise
discretionary
51 gics_consta industry indicator: consumer staples equals one if two-digit GICS code = 30, and zero otherwise
52 gics_health industry indicator: health care equals one if two-digit GICS code = 35, and zero otherwise
53 gics_financ industry indicator: financials equals one if two-digit GICS code = 40, and zero otherwise
54 gics_infotc industry indicator: information equals one if two-digit GICS code = 45, and zero otherwise
technology
55 gics.commun industry indicator: communication equals one if two-digit GICS code = 50, and zero otherwise
services
56 gics_utilit industry indicator: utilities equals one if two-digit GICS code = 55, and zero otherwise
57 gics_reales industry indicator: real estate equals one if two-digit GICS code = 60, and zero otherwise
58 week_mst month-beginning indicator equals one if the week is the month beginning, and zero
otherwise
59 week_med month-ending indicator equals one if the week is the month ending, and zero
otherwise
60 week_gst quarter-beginning indicator equals one if the week is the quarter beginning, and zero
otherwise
61 week_ged quarter-ending indicator equals one if the week is the quarter ending, and zero

otherwise




C Other empirical results

C.1 Separating treated vs. control groups

In Table A-2, I repeat the main difference-in-differences analysis by separating the treated
and control groups. The results confirm that the treatment effect indeed comes from the
treated group. And taking the difference between the treated and the control groups
helps improve statistical power.

Table A-2: Disclosure effect on fund performance: Treated vs. Control group

Risk-adjusted fund returns
Excess return CAPM alpha  FF3 alpha CH4 alpha

Treated - Control -0.385** -0.408** -0.305%** -0.338***
[-2.07] [-2.52] [-3.25] [-4.19]

Treated -0.259 -0.461 -0.368* -0.394**
[-0.30] [-1.20] [-1.98] [-2.00]

Control 0.126 -0.053 -0.063 -0.055
[0.17] [-0.21] [-0.46] [-0.38]

C.2 Robustness: stricter matching requirement

In the main results, the treated funds are from the list of 151 matched mutual funds, as
identified through the matching procedure described in Section A. Here, I consider a
stricter matching requirement by excluding the supplementary matches added in the
third step. Specifically, I restrict the treated funds to the subset of 91 mutual funds
matched using only the initial two steps. As Table A-3 shows, results are robust for the

stricter matching requirement.

Table A-3: Disclosure effect: A sub-sample with stricter matching requirement

Risk-adjusted fund returns
Excess return CAPM alpha  FF3 alpha CH4 alpha

Treatment effect -0.316** -0.353*** -0.384*** -0.474%**
[-2.33] [-3.87] [-4.64] [-4.37]
Observations 120 120 120 120




C.3 Robustness: uncovering trading strategies based on OLS

In the main results, I uncover trading strategies based on a non-linear machine-learning
method: Gradient Boosted Regression Trees (GBRT). As a robustness check, here I consider
uncovering strategies based on linear regression. The results on trading predictability are
shown in Table A-4, and the results on predatory profitability are in Table A-5. Overall,
it suggests that uncovering trading strategies, despite using linear regressions, is still

feasible and profitable.

Table A-4: Trading predictability: Uncovering strategies based on OLS

1) (2) 3)

BuyScore 3.955%%* 2.800%** 1.703***

[11.16] [6.63] [3.05]
SellScore -4.690%** -3.562*** -3.851***

[-12.71] [-7.26] [-5.33]
Observations 465,353 465,334 465,265
Week FE Yes Yes Yes
Stock FE Yes
Stock x Year FE Yes

Table A-5: Predatory profitability: Uncovering strategies based on OLS

Long-short portfolio abnormal returns (weekly)

Portfolio weight Excess return ~ CAPM alpha FF3 alpha CH4 alpha
EW 0.202 0.260** 0.278*** 0.199**
[1.38] [2.42] [2.65] [2.13]
VW 0.251 0.323** 0.366** 0.282**
[1.29] [2.23] [2.43] [2.27]
Observations 313 313 313 313

C.4 Quit rates for client funds

I estimate the quit rates over the period 1998-2007 using the following fund-year panel

regression:

ISE”dYeﬂri,y = 50 —+ ﬁl X ]I{Year:2002} + 132 X ]I{Year>2002} + Bngear FE + ei,y.



To calculate the quit rate with the denominator equal to the number of clients in that
year, fund i is included in the sample only during its period of being a client. This is
to ensure that the number of observations in year y equals the number of clients in that
year. IsEndYear;, equals one if year y is the last year for fund i being a client, and zero
otherwise. BegYear FE is the fixed effects on the first year of being a client. The coefficient
B1 (B2) captures the change in quit rate during 2002 (from 2003 to 2007) relative to the
one during the pre-period. The vertical bars around point estimations represent 95%
confidence intervals. The standard errors are clustered at the year level.

Figure A-1 plots the estimation results. Overall, there is no evidence that quitting
Abel Noser is a major response for client funds. This could be because client funds have
a strong demand for Abel Noser’s services, for example, to demonstrate to their investors
about “best execution” for their transactions. Also, given that past trades were already
released, the marginal benefits of quitting Abel Noser could be small.
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1998-2001 2002 (Event) 2003-2007

Figure A-1: Quit rates for client funds



D Details related to the model

D.1 Proof of Lemma 1

Consider the system with the following stationary processes:

0 = p6;_1+/1—p%uy, (A-1)

Bt = x0;+yPBi_1+zvy, (A-2)

by = (1—r)brq+7r(Br—1+é1), (A-3)
b

_ , A-4

Yt \/% ( )

jid. _ A lid. _ ~
where w;, v; '~ N(0,K k) and é; ~ N(0,02KIx). The error terms u;, vy, and é; are

mutually independent to each other. Note that for k > 0, we have

E(6;0, 1) = o". (A-5)
Define the series of moments

fi = E(6:8i—x), (A-6)

o = E(BiBr—x) (A-7)

Multiplying B;_k on both sides of Eq.(A-1) and taking expectation give

fr=0fk-1- (A-8)

Multiplying 6; on both sides of Eq.(A-2) and taking expectation give

fo =X+ ]/fl (A-9)

Combining Eq.(A-8) and Eq.(A-9) gives

k
xp
_ . (A-10)
Ly

Therefore, we have

X
1—py

lim 0/8; = fo = (A-11)
K—o0



Multiplying B;_ on both sides of Eq.(A-2) and taking expectation give

Pk = Xfr + YPr_1.

(A-12)

Because (¥, y,z) is chosen to ensure E(3/3;) = 1, we have ¢y = 1. Recursively substituting

Eq.(A-12) gives

Pk = Xfi+yxfio1+ Y Pro
= Xfi+yxfi1 + Y xfi2 + YV Pr3

= xfityxfio + v xfro+ -+ Y i+ v g0
2
X _ _ _

= Ty T A T )
2 k_ .k

_xp (p y)+yk

(1—py) (0—y)
= Apf+ (- A,

where

x%p

A= (I—py)p—y)

Because of the restriction [E(3,3;) = 1, (x,y, z) needs to satisfy

E(B8i8:) = E([x0r +yBi-1+zve] [x0: + yBr—1 + zvy])
1 = 24> +2242xyf
2x%yp

1 = 2+ +2+ :
1—=py

which implies

1+ py
22=1- (—)xz— 2,
1—py Y

To calculate I}im 0;~:, we need E(0;b;) and E(b}b;). First, note that
—c0

b =r[(Br-1+é-1)+ (1 —7) B2+ &-—2) + (1 —1)*(Br—3+ &-3) + - -
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(A-13)

(A-14)

(A-15)

(A-16)

(A-17)



Therefore, we have

E(0b;) = rlfi+(1—r)fa+(1—7)fz-]
= 1_py[p+(1—r)pz+(1—r)zp3+---]
Xrp

= A—pi-p(-n] (a-15)

and

E(bjby) = r*(1+c2)[1+1—r)*+1—r)*+---]+
2721 [(1 =)+ (1 =1+ (1 =1+ ]+
277@o[(1—r)+ (1 =) + (1 =)0 4]+

r2 2 2
B 1—(1(;r—(7€7))2 1—(21—r)2[¢1(1_r)+(’)2(1_r) + o]
_ P+0)
T o1 (1-71)2
272

Finally, we have

lim O}y, = —E00)__ el (A-20)
K—oo E(bb 1-— oy r(14-02 r 1—r 1—r ’
(bib1) \/ ) 1 2 Al + (1 - a)
here A= 0
WRETe 2= o) (o—v)

D.2 Proof of Proposition 1

I prove by contradiction, that if z > 0, there is always a profitable deviation for the
developer. Let’s begin with a decision (x,y,z) with z > 0 and satisfying the constraint

11



(Hﬂ> x? 4+ y? + z? = 1. The developer’s objective function is given by

T—py
p
F(xy,z7) = 1 xpy 1- Lp(-r) , (A1)
o r(1402 1-r 1-r
\/ G 2 A + (- A) ey
here A = — 0
WRETe A = T o)

If F(x,y,z;7) <0, then (x,y,z) cannot be the best response, because the developer can
always play (1,0,0), which gives

F(1,0,0;r) = 1— Lpr)

_\/L 1+p(1—r)
2—r [1—p(1—71)
_pVr(2—r)
V1-p*(1-r)?
p*(2r—12)

A=)+ 22— 1)
> 0. (A-22)

Therefore, we only need to consider the decision (x,y,z) with F(x,y,z;7) > 0. Next, let’s
consider an alternative decision (x’,y,0) satisfying the constraint

L+ py ) N2 2
— () +y =1, (A-23)
(1 — Py !
which gives ¥’ = /1=22U=V) By construction, ¥’ > x because (x')2 — 12 = <ﬂ> 22 >
g 1+py - by 4 1+py

0. To compare F(x,y,z;7) and F(x',y,0;7), first, we have

x! X

> .
I—py 1-py

+(1-A) Y121 there are three possibilities:

Next, for the term Alf(lfi) Ty (i=r)’

p(1-7)

12



(1-7)

 If y = p, then it collapses to ; £ (1) which is irrelevant to x and z;

. (1-r (1-7) himol (1-7)
If y < p, wehave A(x") > A(x) and lpp(l )r) > 1yy(1 7y, which implies A(x’)lfp(l_r) +

1—r
[1— AT > A 22 + 1 - A

* Ify > p, wehave A(x') < A(x) and £ (pl(i)r) < 13(;(1 ") 7y, which implies A(x')1 (pl(;i)r) +

[1— AT > A2 + 1 - A

Taken together, we have

A(x’)% . A(x’)]% >

p(1—1) ( —1) )
Therefore, given that F(x,y,z;r) > 0, Eq.(A-24) and Eq.(A-25) imply
F(x',y,0;r) > F(x,y,27), (A-26)

which finishes the proof.
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